Modeling and Experimental Studies on 3D-Magnetic Flux Leakage Testing for Enhanced Flaw Detection in Carbon Steel Plates

For enhanced detection of flaws in engineering components using magnetic flux leakage (MFL) technique, measurement of the leakage magnetic field components along the three perpendicular directions is beneficial. This article presents the three dimensional-magnetic flux leakage (3D-MFL) modeling and experimental studies carried out on carbon steel plates. Magnetic dipole model has been used for the prediction of MFL signals and images. Sensitivity of the MFL signals peak amplitudes of tangential (HX), circumferential (HY), and normal (HZ) components with respect to flaw length, width, depth and lift-off have been studied. A 3D-GMR sensor has been used for simultaneous measurement of all the three components of leakage magnetic fields from surface flaws in 12 mm thick carbon steel plates. The experimental MFL images have been compared with the model predicted MFL images. The sensor has shown the capability to detect and image 0.9 mm deep surface flaws with a signal to noise ratio of 8 dB. Principal component analysis (PCA)-based image fusion has been performed for fusion of the 3D-MFL images to obtain a geometrical profile of the flaws. Study reveals that 3D-GMR enhances the capability for detection of flaws having irregular geometries.

DOI: 10.1080/09349847.2018.1476743

References

B. P. C. Rao, J. Non-Destruct. Testing and Eval. 11 (3), 7–17 (2012).

G. Dobmann, in Electromagnetic Methods of Nondestructive Testing, edited by W. Lord (Gordon and Breach Science Publishers, New York, USA, 1985), pp. 71–95.

V. Babbar and L. Clapham, J. Nondestruct. Eval. 22 (4), 117–125 (2003). DOI: 10.1023/B:JONE.0000022031.16580.5a.

B. Feng, Y. Kang, and Y. Sun, Res. Nondestr. Eval. 27 (2), 100–111 (2016). DOI: 10.1080/09349847.2015.1061721.

D. C. Jiles, NDT Int. 23 (2), 83–92 (1990).

D. Jinfeng, K. Yihua, and W. Xinjun, NDT & E Int. 39 (1), 53–56 (2006). DOI: 10.1016/j.ndteint.2005.06.005.

R. K. Amineh et al., IEEE Trans. Magn. 44 (4), 516–524 (2008). DOI: 10.1109/TMAG.2008.915592.

W. Sharatchandra Singh et al., Meas. Sc. Technol. 19, 015702 (2008). DOI: 10.1088/0957-0233/19/1/015702.

W. Sharatchandra Singh et al., J. Non-Destruct. Testing & Eval. 8 (2), 23–28 (2009).

M. Göktepe., Adv. Mat. Sc. Eng. Article ID 708396, 1–8 (2013).

Y. Li, J. Wilson, and G. Y. Tian, NDT & E Int. 40 (2), 179–184 (2007). DOI: 10.1016/j.ndteint.2006.08.002.

S. Miller and F. Sander, Pipeline Tech. Conf (HannoverMesse, Hannover, Germany, 2008).

W. Sharatchandra Singh et al., J. Nondestruct. Eval. 34, 19 (2015). DOI: 10.1007/s10921-015-0295-7.

B. Sasi et al., Proc. Nat. Sym. Phys. Tech. Sensors. Mumbai, 1, 273–275 (2007).

S. M. Dutta, F. H. Ghorbel, and R. K. Stanley, IEEE Trans. Magn. 45 (4), 1959–1965 (2009). DOI: 10.1109/TMAG.2008.2011895.

C. Edwards and S. B. Palmer, J. Phys. D: Appl. Phys. 19 (4), 657–673 (1986). DOI: 10.1088/0022-3727/19/4/018.

V. Reimund et al., Int. J. Appl. Elect. Mech. 37, 199–205 (2011).

P. Kalyanasundaram et al., Res. Nondestr. Eval. 18 (1), 13–21 (2007). DOI: 10.1080/09349840601128697.

X. X. Zhu and R. Bamler, IEEE Trans. Geosc. Rem. Sens. 51 (5), 2827–2836 (2013). DOI: 10.1109/TGRS.2012.2213604.

Z. Wang et al., IEEE Trans. Im. Proc. 13 (4), 600–612 (2004). DOI: 10.1109/TIP.2003.819861.

H. Altenbach and V. A. Eremeyev, Arch Appl. Mech. 78 (10), 775–794 (2008). DOI: 10.1007/s00419-007-0192-3.

Metrics
Usage Shares
Total Views
20 Page Views
Total Shares
0 Tweets
20
0 PDF Downloads
0
0 Facebook Shares
Total Usage
20