Grain size correction of welding residual stress measurement in a carbon steel plate using the critical refraction of longitudinal waves

In this, a method to measure welding residual stress in buttwelded joints of carbon steel plates using longitudinal critically refracted wave (Lcr wave) is proposed. Cross correlation was employed to calculate the difference in time of flight between Lcr wave, and the optimal step length for the measurements is discussed. To determine Lcr wave acoustoelastic coefficient of the heat affected zone (HAZ), the relationship between the Lcr wave acoustoelastic coefficient and the grain size is established. The results show that one cycle is the optimal step length for the difference in the time-of-flight calculation, and with increasing grain size increase, Lcr wave acoustoelastic coefficient decreases in the form of a power function. In addition, grain size can be determined by using amplitude of the Lcr wave, so that the measured value of welding residual stress in HAZ can be corrected. The welding residual stress in melted zone (MZ) is corrected by calibrating acoustoelastic coefficient of the MZ. The acoustoelastic coefficient of the MZ is larger than that of parent material (PM). At last, welding residual stress in the butt-weld joint is measured and corrected with the Lcr wave technique. The results are verified by the hole drilling method.

References

[1] Y. Javadi and M. Ashoori. Mater. Des. 85, 82 (2015). DOI: 10.1016/j.matdes.2015.07.012.

[2] Y. Javadi, H. S. Pirzaman, M. H. Raeisi, and M. A. Najafabadi. Int J. Press. Ves. Pip. 123, 111 (2014). DOI: 10.1016/j.ijpvp.2014.08.006.

[3] Y. Javadi, S. Sadeghi, and M. A. Najafabadi. Mater. Des. 55, 27 (2014). DOI: 10.1016/j.matdes.2013.10.021.

[4] E. Y. Hu, Y. M. He, and Y. M. Chen. Appl. Acoust. 70, 356 (2009). DOI: 10.1016/j.apacoust.2008.03.002.

[5] A. Lhémery, P. Calmon, S. Chatillon, and N. Gengembre. Ultrasonics 40, 231 (2002). DOI: 10.1016/S0041-624X(02)00143-9.

[6] M. Ya, P. Marquette, F. Belahcene, and J. Lu. Mater. Sci. Eng. A 382, 257 (2004). DOI: 10.1016/j.msea.2004.05.020.

[7] D. E. Bray and W. Tang. Nucl. Eng. Des. 207, 231 (2001). DOI: 10.1016/S0029-5493(01)00334-X.

[8] F. Belahcene and J. Lu. J. Strain Anal. Eng. Des 37, 13 (2002). DOI: 10.1243/0309324021514790.

[9] C. Xu, W. Song, Q Pan, H. Li, and S. Liu. Phy. Porcedia 70, 594 (2015). DOI: 10.1016/j.phpro.2015.08.030.

[10] J. Kwaśniewki, I. Dominik, and K. Lalik. Mech. Sys. Sig. Process. 78, 143 (2016). DOI:10.1016/j.ymssp.2016.02.035.

[11] A. I. Trofimov, S. I. Minin, and M. A. Trofimov. Nucl. Eng. Technol. 20, 20 (2016).

[12] P. Palanichamy, A. Joseph, and T. Jayakumar. NDT&E Int. 28, 179 (1995). DOI: 10.1016/0963-8695(95)00011-L.

[13] G. C. Hakan and T. B. Orkun. Int. J. Microstruct. Mater. Prop. 1, 51 (2005).

[14] C. H. Gür and İ. Çam. Mater. Charact. 58, 447 (2007). DOI: 10.1016/j.matchar.2006.06.008.

[15] M.-A. Ploix, R. El Guerjouma, J. Moysan, G. Corneloup, and B. Chassingnole. NDT J. Soc. Adv. Sci. 17, 76 (2005). DOI: 10.2978/jsas.17.76.

[16] D. S. Hughes and J. L. Kelly. Phys. Rev. 92, 1145 (1953).

[17] L. Zhang and X. L. Wu. Digital Sig. Process. 16, 682 (2006).

[18] X. X. Ouyang, L. Y. Luo, and J. X. Xiong. Proc. Eng 29, 2033 (2012). DOI: 10.1016/j.proeng.2012.01.257.

[19] R. Truell, C. Elbaum, and B. B. Chick. Ultrasonic Methods in Solid State Physics, 1st ed. (Academic Press, New York, NY, 1969).

[20] B. Liu and S. Y. Dong. Mater. Res. Innov. 19, 1 (2015). DOI: 10.1179/1433075X13Y.0000000195.

[21] Y. Javadi, M. Akhlaghi, and M. A. Najafabadi. Mater. Des 45, 628 (2013).

[22] H. Qozam et al., Exp. Mech. 50, 179 (2010).

Metrics
Usage Shares
Total Views
10 Page Views
Total Shares
0 Tweets
10
0 PDF Downloads
0
0 Facebook Shares
Total Usage
10