Article Article
Quantitative Phase-Space Nonlinear Ultrasound (PSNU)

ABSTRACT This paper presents a new technique based on Phase-Space analysis of nonlinear ultrasound waveforms. Nondestructive evaluation techniques based on acoustic nonlinearity have shown promising results in detection and characterization of discontinuities in materials. They have successfully been used in applications where traditional linear ultrasound techniques were incapable of characterizing defects. An example of nonlinear ultrasound application is to characterize surface and subsurface defects that exhibit loaded interfaces such as fatigue cracks in metallic structures, and kissing bonds between laminar polymers. The current nonlinear ultrasound techniques and models, however, are based on evaluating and quantifying sub and/or super harmonics generation in frequency domain that make them incapable of classifying different physical phenomenon that cause similar spectral nonlinearity effect. As a result, the current nonlinear techniques are very prone to false alarm. In this paper the phase-space topography of ultrasound waveform is constructed numerically. Quantitative features extracted from Poincaré map of the constructed phase-space portrait is used for the first time to analyze and characterize defects. The Phase-Space Nonlinear Ultrasound (PSNU) provides a powerful diagnostic tool for development of reliable material evaluation and effective structural health monitoring methods. Experimental results show that the PSNU provides a unique detection and classification capability.

DOI: https://doi.org/10.32548/RS.2018.022

References

 

  • Shull, P. J., Nondestructive Evaluation Theory, Techniques, and Applications, Marcel Dekker, Inc, 2001.
  • Dehghan-Niri, E., and Salamone, S., A multi-helical ultrasonic imaging approach for the structural health monitoring of cylindrical structures, Struct. Heal. Monit. (2014). doi:10.1177/1475921714548937.
  • Dehghan-Niri, E., Al-Beer, H., Phase-space topography characterization of nonlinear ultrasound waveforms, Ultrasonics. 84 (2018). doi:10.1016/j.ultras.2017.12.007.
  • Jhang, K., Nonlinear Ultrasonic Techniques for Non- destructive Assessment of Micro Damage in Material : A Review, 10 (2009) 123–135.
  • Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W., Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves, J. Acoust. Soc. Am. 120 (2006) 1266–1273. doi:10.1121/1.2221557.
  • Cantrell, J.H. Yost, W.T., Nonlinear ultrasonic characterizaion of fatigue microstructures, Int. J. Fatigue. 23 (2001) 487–490.
  • Solodov, I., Ultrasonics of non-linear contacts:propagation, reflection and NDE-applications, Ultrasonics. 36 (1998) 383–390.
  • Ren, G., Kim, J., Jhang, K., Relationship between second- and third-order acoustic nonlinear parameters in relative measurement, Ultrasonics. 56 (2015) 539–544.
  • Singh, A.K., Chen, B., Tan, V.B.C., Tay, T., Lee, H., Finite element modeling of nonlinear acoustics / ultrasonics for the detection of closed delaminations in composites, Ultrasonics. 74 (2017) 89–98.
  • Ohara, Y., Mihara, T., Yamanaka, K., Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound, Ultrasonics. 44 (2006) 194–199. doi:10.1016/j.ultras.2005.10.006.
  • Korshak, B.A., Solodov, T., Ballad, E.M., DC effects, subharmonics, stochasticity and “memory” for contact acoustic non-linearity, Ultrasonics. 40 (2002) 707–713.
  • Yamanaka, K., Mihara, T., Tsuji, T., Evaluation of closed cracks by analysis of subharmonic ultrasound, Jpn. J. Appl. Phys. 46 (2004) 666–670. doi:10.1784/insi.46.11.666.52281.
  • Van Den Abeele, K.E.A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A., Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy, Res. Nondestruct. Eval. 12 (2000) 17–30. doi:10.1080/09349840009409646.
  • Johnson, A., Payan, C., Garnier, V., Moysan, J. Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage, J. Acoust. Soc. Am. 121 (2007) EL125-EL130. doi:10.1121/1.2710745.
  • Muller, M., Sutin, A., Guyer, R., Talmant, M., Laugier, P., Johson, P. A. , Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone, J. Acoust. Soc. Am. Soc. Am. 118 (2005) 3946–3952. doi:10.1121/1.2126917.
  • Hillis, A.J., Neild, S.A., Drinkwater, B.W., Wilcox, P.D., Global crack detection using bispectral analysis, Proceedings of the, in: R. Soc. Am., 2006: pp. 1515–1530.
  • Straka, L., Yagodzinskyy, Y., Landa, M., Hanninen, H., Detection of Structural Damage of Aluminum Alloy 6082 Using Elastic Wave Modulation Spectroscopy, NDT E Int. 41 (2008) 554–563.
  • Zumpano, G., Meo, M., Damage Localization Using Transient Non-Linear Elastic Wave Spectroscopy on Composite Structures, Int. J. Non. Linear. Mech. 43 (2008).
  • Hafezi, M.H., Alebrahim, R., Kundu, T., Peri-ultrasound for modeling linear and nonlinear ultrasonic response, Ultrasonics. 80 (2017) 47–57.
  • Goldstein, J., Attractors and nonlinear dynamical systems, Plex. Inst. Deep. Learn. (2011) 1–17. http://adaptknowledge.com/wp-content/uploads/rapidintake/PI_CL/media/deeperlearningspring2011.pdf.
  • Liu, P., Nazirah, A.W., Sohn, H., Numerical simulation of damage detection using laser-generated ultrasound, Ultrasonics. 69 (2016) 248–258. doi:10.1016/j.ultras.2016.03.013.
  • Liu, X., Bo, L., Liu, Y., Zhao, Y., Zhang, J., Hu, N., Fu, S., Deng, M., Detection of micro-cracks using nonlinear lamb waves based on the Duffing-Holmes system, J. Sound Vib. 405 (2017) 175–186. doi:10.1016/j.jsv.2017.05.044.
  • Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S., Geometry from a time series, Phys. Rev. Lett. 45 (1980) 712–716. doi:10.1103/PhysRevLett.45.712.
  • Martins Lima, M.F., Tenreiro Machado, J.A., Crisostomo, M.M. , Pseudo phase plane, delay and fractional dynamics, J. Eur. Syst. Autom. 42 (2008) 1037–1051.
  • Feeny, B.F., Lin, G., Das, T., Reconstructing the Phase Space With Fractional Derivatives, Vol. 5 19th Bienn. Conf. Mech. Vib. Noise, Parts A, B, C. 2003 (2003) 2425–2435. doi:10.1115/DETC2003/VIB-48595.
  • Tenreiro Machado, J.A., Mata, M.E., Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn, Commun. Nonlinear Sci. Numer. Simul. 22 (2015) 396–406. doi:10.1016/j.cnsns.2014.08.032.
  • Choi, J., Park, J. , Kim, K., Kim, J., A daily peak load forecasting system using a chaotic time series, Proc. Int. Conf. Intell. Syst. Appl. to Power Syst. (1996) 283287. doi:10.1109/ISAP.1996.501083.
  • Fraser, A.M., Swinney, H.L., Independent coordinates for strange attractors from mutual information, Phys. Rev. A. 33 (1986) 11341140.
  • Parker, T.S., Chua, L., Practical Numerical Algorithms for Chaotic Systems, Springer Science & Business Media, 2012.
  • Han, X. , Li, W., Zengl, Z. , Thomas, D.F.L., Han, X., Li, W. , Zeng, Z. , Acoustic chaos and sonic infrared imaging, Appl. Phys. Lett. 81 (2004) 31883190. doi:10.1063/1.1516240.
  • Solodov, I. , Wackerl, J. , Pfleiderer, K., Busse, G., Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location, Appl. Phys. Lett. 84 (2004) 53865388. doi:10.1063/1.1767283.
Metrics
Usage Shares
Total Views
38 Page Views
Total Shares
0 Tweets
38
0 PDF Downloads
0
0 Facebook Shares
Total Usage
38