Eddy Current Testing of Delamination in Carbon Fiber Reinforced Polymer (CFRP): A Finite Element Analysis

Carbon fiber reinforced polymer (CFRP) is widely used thanks to its excellent material properties. However, damages, especially delamination, can cause significant reduction in strength of CFRP structures. This article attempts to study the nondestructive testing of delamination using eddy current (EC) method. To this end, we design a novel probe consisting of dual coplanar rectangular coils placed perpendicular to sample surface, and make use of the vertical sections of the coils to induce vertical EC in the test sample. Perturbation of the vertical EC by delamination gives us a chance to detect delamination. Simulation results by the finite element method demonstrate the feasibility of the proposed method.

References

  1. V. Tamuzs, V. Valdmanis, R. Tepfers, and K. Gylltoft. Mech. Compos. Mater. 44:199–208 (2008).
  2. H. A. Maples, O. Smith, C. Burgstaller, P. Robinson, and A. Bismarck. Compos. Sci. Technol. 128: 185–192 (2016).
  3. T. Bergmann, S. Heimbs, and M. Maier. Compos. Struct. 125: 362–373 (2015).
  4. C. Garnier, M. Pastor, F. Eyma, and B. Lorrain. Compos. Struct. 93: 1328–1336 (2011).
  5. G. Pappas and J. Botsis. Int. J. Solids Struct. 85–86: 114–124 (2016).
  6. E. Farmand-Ashtiani, J. Cugnoni, and J. Botsis. Int. J. Solids Struct. 55: 58–65 (2015).
  7. S. Stutz, J. Cugnoni, and J. Botsis. Compos. Sci. Technol. 71: 443–449 (2011).
  8. R. Harichandran, S. Hong, L. Udpa, and Z. Zeng. Proc. 2nd Int. Conf. FRP Compos. Civ. Eng. 281–289 (2004).
  9. M. C. Sundarraja and G. G. Prabhu. J. Reinf. Plast. Compos. 30: 1251–1263 (2011).
  10. Y. Liu, B. Zwingmann, and M. Schlaich. Polymers. 7: 2078–2099 (2015).
  11. S. Robert, O. Casula, O. Roy, and G. Neau. Meas. Sci. Technol. 24: 074011 (2013).
  12. F. Sket, A. Enfedaque, C. Alton, C. GonzЗlez, J. M. Molina-Aldareguia, and J. Llorca. Compos. Sci. Technol. 90: 129–138 (2014).
  13. L. Cheng and G. Tian. Proc. IEEE Instru. Meas. Technol. Conf. 1902–1907 (2012).
  14. G. Mook, R. Lange, and O. Koeser. Compos. Sci. Technol. 61: 865–873 (2001).
  15. R. Grimberg, A. Savin, R. Steigmann, and A. Bruma. Proc. 8th Int. Conf. Slovenian Soc. Nondestruc. Test., 223–228 (2005).
  16. K. Koyama, H. Hoshikawa, and G. Kojima. J. Press. Vessel. Technol. 135: 041501 (2013).
  17. B. Salski, W. Gwarek, and P. Korpas. Proc. IEEE Int. Micro. Symp. 1–4 (2014).
  18. Y. He, G. Tian, M. Pan, and D. Chen. Compos. Part B-Eng. 59: 196–203 (2014).
  19. W. Yin, P. J. Withers, U. Sharma, and A. J. Peyton. IEEE Trans. Instrum. Meas. 58:738–743 (2009).
  20. D. Wo, S. Li, X. Wang, X. Liu, Z. Wang, and G. Zhang. Encyclopedia of Composites. 1st ed., Chemical Industry Press, Beijing, pp. 513–689 (2000), in Chinese.
  21. Y. He, M. Pan, F. Luo, and G. Tian. NDT&E Int. 44: 344–352 (2011).
  22. J. GiguПre, B. Lepine, and J. Dubois. Rev. Prog. Quant. Nondestruct. Eval. 21:1968–1975 (2002).
  23. S. B. Pratap and W. F. Weldon. IEEE Trans. Magn. 32: 437–444 (1996).
  24. H. Menana and M. FОliachi. IEEE Trans. Magn. 45: 1008–1011 (2009).
  25. Z. Zeng, X. Liu, Y. Deng, L. Udpa, and J. S. Knopp. Prz. Elektrotech. 83: 35–37 (2007).
  26. S. K. Burke. J. Appl. Phys. 68: 3080–3090 (1990).

 

 

Metrics
Usage Shares
Total Views
25 Page Views
Total Shares
0 Tweets
25
0 PDF Downloads
0
0 Facebook Shares
Total Usage
25