
The feasibility of using laser-generated ultrasonic Total Focusing Method (TFM) was assessed for guided ultrasonic waves in finite plates. The application under consideration is for inspection of ultrasonically welded battery tab-to-electrode foil stack joints. The testing constraints for this weld necessitate couplant-free, remote, guided-wave conditions making laser ultrasonic TFM an ideal inspection technique. It was determined that laser-generated guided wave TFM can be used to remotely assess defects in a finite plate when the defects are strong reflectors in the plane of wave propagation. The finite dimensions of the tab require a strong understanding of the edge reflection effects on the TFM image. The guided wave modes used in this study were strongly affected by scattering due to the complex weld geometry, which most resembles that of a periodic triangular grated wave guide. Future work will investigate methods to compensate for the strong scattering/guided wave effects, the use of other guided wave geometries, out of plane TFM reconstruction for other weld defect types, as well as apodization effects.
DOI: https://doi.org/10.1080/09349847.2023.2195369
1. C. Holmes, B. W. Drinkwater, and P. D. Wilcox, NDT E Int. 38 (8), 701–711 (2005). DOI: 10.1016/j.ndteint.2005.04.002.
2. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (New York: Oxford University Press 2007).
3. P. Lindblad, Master‘s Thesis: Imaging and thickness estimation of fibre-reinforced polymers using ultrasonic array beamforming (Luleå University of Technology 2015).
4. M. Beard, M. Lowe, and P. Cawley, J. Mater. Civil Eng. 15 (3), 212–218 (2003). DOI: 10.1061/(ASCE)0899-1561(2003)15:3(212).
5. J. L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University Press, Cambridge, 2014).
6. C. B. Scruby and L. E. Drain, in Laser Ultrasonics: Techniques and Applications, 1st ed., (New York: Routledge, 1990).
7. S. Kercel et al. Int. Soc. Opt. Photonics. 3852, 81–92. (1999).
8. T. Stratoudaki, M. Clark, and P. Wilcox. Adapting the full matrix capture and the Total Focusing Method to laser ultrasonics for remote non destructive testing. in 2017 IEEE International Ultrasonics Symposium (IUS) Washington DC. 2017.
9. T. Stratoudaki, M. Clark, and P. D. Wilcox, Opt. Express. 24 (19), 21921–21938 (2016). DOI: 10.1364/OE.24.021921.
10. P. Lukacs et al. Optimisation of data acquisition and processing for laser induced ultrasonic phased arrays. in Proceedings of Meetings on Acoustics 38 DOI: 10.1121/2.0001170. 2019.
11. Z. Liu et al., J. Vis. 21 (5), 751–761 (2018). DOI:10.1007/s12650-018-0497-z
12. F. Li and Y. Luo, Acta Mech. Solida Sin. 34 (3), 404–424 (2021). DOI: 10.1007/s10338-021-00216-0.
13. M. McGovern et al. Total focusing method with laser-generated ultrasonic waves for defect detection in finite plates. in ASNT Research Symposium 2022. St. Louis, MO.
14. M. E. McGovern, T. J. Rinker, and R. C. Sekol, J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2 (1) (2019). DOI: 10.1115/1.4042260.
15. M. E. McGovern et al., A review of research needs in nondestructive evaluation for quality verification in electric vehicle lithium-ion battery cell manufacturing J. Power Sources. 561, 232742 (2023). DOI: 10.1016/j.jpowsour.2023.232742.
16. J. -P. Monchalin, Ultrasonic Advanced Methods for Nondestructive Testing and Material Characterization. 79–115. (2007). DOI: 10.1142/9789812770943_0004.
17. S. J. Davies et al., J. Phys. D: Appl. Phys. 26(3), 329–348 (1993). DOI:10.1088/0022-3727/26/3/001
18. N. Harhad et al., Ultrasonics. 54(3), 860–866 (2014). DOI:10.1016/j.ultras.2013.10.012
19. F. Gao, H. Zhou, and C. Huang, Opt. Commun 474, 126070 (2020). DOI: 10.1016/j.optcom.2020.126070.
20. M. Bavencoffe et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56(9), 1960–1967 (2009). DOI:10.1109/TUFFC.2009.1272
21. D. Leduc et al., J. Acoust. Soc. Am. 118 (4) 2234–2239 (2005). 10.1121/1.2005987
22. I. A. Viktorov, Rayleigh and Lamb waves: physical theory and applications. Transl. from Russian in With a Foreword by Warren P. Mason (New York: Plenum press 1967).
23. D. E. Chimenti and O. I. Lobkis, Ultrasonics Ultrasonics. 36 (1), 155–162 (1998). DOI: 10.1016/S0041-624X(97)00036-X
24. D. Leduc et al., NDT E. Int. 42(6), 513–517 (2009). DOI:10.1016/j.ndteint.2009.02.008
25. C. Potel et al., J. Appl. Phys. 104(7), 1–10 (2008). DOI:10.1063/1.2979851
26. C. Potel et al., J. Appl. Phys. 104(7), 1–10 (2008). DOI:10.1063/1.2979850
Usage | Shares |
---|---|
Total Views 105 Page Views |
Total Shares 0 Tweets |
105 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
105 |