
In this study, we investigate the feasibility of using nonlinear resonance ultrasound spectroscopy (NRUS) for in-situ monitoring of additively manufactured (AM) parts i.e., while they are still on the build plate. In NRUS, the test specimen is excited around one or more of its resonance frequencies with increasing driving amplitude. The linear shift in resonance frequency with the increasing driving amplitude is a measure of the constituent material’s hysteretic nonlinearity (α), which is itself related to some degree of micro-damage in the test specimens. We conduct NRUS on test specimens glued to a thick plate. The specimens are excited using a piezoelectric transducer (PZT) adhered to the bottom of the plate. We use this setup to measure the hysteretic nonlinearity parameters (αf and αQ) of several cylindrical AM specimens fabricated by laser powder bed fusion technique as well as a few non-AM metallic specimens. The measured nonlinearity parameters for the specimens on the build plate (process monitoring mode) are compared to those measured without the build plate (quality control mode). We observe a systematic decrease in the measured nonlinearity when the specimens are tested on the build plate. An analytical study demonstrates that we measure the weighted average nonlinearity of the specimen and build plate, which itself has a lower nonlinearity. Despite the observed difference, the measured nonlinearity parameters of the specimens with and without the build plate are highly correlated. With further investigations, the proposed test setup can potentially be used for characterization of AM parts in situ.
DOI: https://doi.org/10.1080/09349847.2022.2103219
1. Z. Snow et al., Addit. Manuf. 36, 101457 (2020). DOI: 10.1016/j.addma.2020.101457.
2. J. Waller et al., Nondestructive Evaluation of Additive Manufacturing. NASA Report (2014). DOI: 10.13140/RG.2.1.1227.9844.
3. A. du Plessis et al., 3D Print. Addit. Manuf. 3 (3), 175–182 (2016). DOI: 10.1089/3dp.2016.0012.
4. A. du Plessis et al., Case Stud. Nondestruct. Test. Eval. 4, 1–7 (2015). Doi: 10.1016/j.csndt.2015.09.001.
5. A. Lopez et al., Addit. Manuf. 21, 298–306 (2018). DOI: 10.1016/j.addma.2018.03.020.
6. N. Huang et al., Addit. Manuf. 102591 (2022). DOI: 10.1016/j.addma.2021.102591
7. J. A. Slotwinski et al., J. Res. Nat. Inst. Stand. Technol. 119 494–528 (2014). DOI: 10.6028/jres.119.019.
8. C. Kim et al., Addit. Manuf. 38, 101800 (2021). DOI: 10.1016/j.addma.2020.101800.
9. Y. Javadi et al., Addit. Manuf. 29, 100806 (2019). DOI: 10.1016/j.addma.2019.100806.
10. E. Hanks et al., J. Def. Anal. Logist. 3 (2), 131–141 (2019). DOI: 10.1108/JDAL-12-2018-0019.
11. T. Dai et al., China Foundry. 18, 360–368 (2021). DOI: 10.1007/s41230-021-1063-1.
12. G. Davis et al., Int. J. Adv. Manuf. Technol. 110 (5–6), 1203–1217 (2020). DOI: 10.1007/s00170-020-05946-y.
13. C. Bakre and C. J. Lissenden, Sensors. 21, 5495 (2021). DOI: 10.3390/s21165495.
14. H. Krauss et al., Thermographic Process Monitoring in Powderbed Based Additive Manufacturing. 41st Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP. 1650, 177–183 (2015). DOI: 10.1063/1.4914608.
15. E. D’Accardi et al., IOP Conf. Ser. Mater. Sci. Eng. 1038, 012018 (2021). Doi: 10.1088/1757-899x/1038/1/012018.
16. R. A. Livings et al., Struct. Integr. Addit. Manuf. Parts, ASTM International, Nondestructive Evaluation of Additive Manufactured Parts Using Process Compensated Resonance Testing. 165–205 (2020). DOI: 10.1520/STP162020180111.
17. H. Taheri et al., J. Adv. Join. Process. 5, 100117 (2022). DOI: 10.1016/j.jajp.2022.100117.
18. W. L. Johnson et al., Resonant acoustic nonlinearity and loss in additively manufactured stainless steel, 45th Annual Review of Progress in Quantitative Nondestructive Evaluation. Vermont, USA. AIP. 38, 020008-1–8 (2019). DOI: 10.1063/1.5099712.
19. S. McGuigan et al., Addit. Manuf. 39, 101808 (2021). DOI: 10.1016/j.addma.2020.101808.
20. Y. Ibrahim et al., Addit. Manuf. 24, 566–576 (2018). DOI: 10.1016/j.addma.2018.10.034.
21. J. Rossin et al., Mater. Charact. 167, 110501 (2020). DOI: 10.1016/j.matchar.2020.110501.
22. Z. Prevorovsky et al., Cond. Monit. 61, 157–161 (2019). Doi: 10.1784/insi.2019.61.3.157.
23. A. Bellotti et al., J. Acoust. Soc. Am. 149 (1), 158–166 (2021). DOI: 10.1121/10.0002960.
24. J. Kober et al., J. Nondestruct. Eval. 39 (4), 86 (2020). DOI: 10.1007/s10921-020-00731-z.
25. E. Bozek et al., NDT E Int. 123, 102495 (2021). DOI: 10.1016/j.ndteint.2021.102495.
26. E. C. Koskelo and E. B. Flynn. Scanning laser ultrasound and wavenumber spectroscopy for in-process inspection of additively manufactured parts. Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure. Las Vegas, Nevada, United StatesProc. of SPIE. 9804, 256–276 (2016). DOI: 10.1117/12.2222130.
27. H. Rieder et al., AIP Conf. Proc. 130002 (2016). DOI: 10.1063/1.4940605.
28. S. K. Everton et al., Mater. Des. 95, 431–445 (2016). DOI: 10.1016/j.matdes.2016.01.099.
29. K. R. McCall, J. Geophys. Res. Solid Earth. 99, 2591–2600 (1994). DOI: 10.1029/93JB02974.
30. R. A. Guyer et al., Phys. Rev. Lett. 74 (17), 3491–3494 (1995). DOI: 10.1103/PhysRevLett.74.3491.
31. D. Pasqualini et al., J. Geophys. Res 112 (B1), B01204 (2007). DOI: 10.1029/2006JB004264.
32. P. A. Johnson et al., J. Geophys. Res. Solid Earth. 101 (B5), 11553–11564 (1996). DOI: 10.1029/96JB00647.
33. K. M. S. Levy et al., J. Acoust. Soc. Am. 148 (4), 2429–2437 (2020). DOI: 10.1121/10.0002360.
34. K. Van Den Abeele, J. Acoust. Soc. Am. 122, 73–90 (2007). DOI: 10.1121/1.2735807.
35. S. Maier et al., NDT E Int. 98, 37–44 (2018). DOI: 10.1016/j.ndteint.2018.04.003.
36. S. S. Rao, Vibration of Continuous Systems (John Wiley & Sons, Inc, Hoboken, NJ, USA, 2006). DOI: 10.1002/9780470117866.
37. J. Jin and P. Shokouhi, Res. Nondestruct. Eval. 1–13 (2021). DOI: 10.1080/09349847.2021.2017530
38. K. Y.-W. Lin et al., J. Acoust. Soc. Am. 150 (4), 3011–3022 (2021). DOI: 10.1121/10.0006376.
39. S. Haupert et al., J. Acoust. Soc. Am. 130 (5), 2654–2661 (2011). DOI: 10.1121/1.3641405.
40. COMSOL, (2019).
41. C. Payan et al., J. Acous. Soc. Am. 136 (2), 537–546 (2014). Doi: 10.1121/1.4887451.
42. M. A. Stuber Geesey et al., NDT E Int. 104, 10–18 (2019). DOI: 10.1016/j.ndteint.2019.03.004.
43. J. F. Gregg et al., NDT E Int. 109, 102181 (2020). DOI: 10.1016/j.ndteint.2019.102181.
44. M. C. Remillieux et al., Phys. Rev. Lett 116 (11), 115501 (2016). DOI: 10.1103/PhysRevLett.116.115501.
45. P. Johnson and A. Sutin, J. Acoust. Soc. Am. 117, 124–130 (2005). DOI: 10.1121/1.1823351.
46. J. D. Trolinger et al., A non-destructive evaluation system for additive manufacturing based on acoustic signature analysis with laser Doppler vibrometry. SPIE Optical Engineering + Applications San Diego, California , edited by M. B. N. Morris et al., SPIE, 10749, 12 (2018). DOI:10.1117/12.2320445.
47. S. Chen et al., J. Mater. Res. Technol. 17, 2950–2974 (2022). DOI: 10.1016/J.JMRT.2022.02.054.
48. A. B. Lebedev. Amplitude-dependent elastic-modulus defect in the main dislocation hysteresis models, Phys. of the Solid State. 41 (7), 1105–1111(1999) DOI:10.1134/1.1130947.
Usage | Shares |
---|---|
Total Views 17 Page Views |
Total Shares 0 Tweets |
17 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
17 |