
In this study, a cylindrical test specimen with a 3D through-hole defect was processed, and the reflected echo data of the defect at different cross-sections were obtained by an ultrasonic testing detection system. On this basis, two data processing methods were designed to obtain two types of 3D reconstruction images of defects, and the reconstruction effects of two methods were compared using the real defects. In general, this study achieved a relatively accurate 3D reconstruction of through-hole defects at a low cost. Our methods provided lower cost than current state-of-the-art approaches.
DOI: https://doi.org/10.1080/09349847.2023.2175281
1. M. A. Fakih et al., Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis. Mech Syst Signal Process. 101, 516–534 (2018). DOI: 10.1016/j.ymssp.2017.09.003.
2. L. T. Nguyen, G. K. Kocur, and E. H. Saenger, Defect mapping in pipes by ultrasonic wave field cross-correlation: a synthetic verification. Ultrasonics. 90, 153–165 (2018). DOI: 10.1016/j.ultras.2018.06.014.
3. Y. Jung et al.A direct volume rendering visualization approach for serial PET–CT scans that preserves anatomical consistency. Int. J. Comput. Assist. Radiol. Surg. 14(5), 733–744 (2019). DOI: 10.1007/s11548-019-01916-2.
4. Q. Huang and Z. Zeng A review on real-time 3D ultrasound imaging technology. Biomed. Res. Int. (2017). 2017. 1–20; 10.1155/2017/6027029.
5. K. Kwon, B. J. Lee, and B. S. Shin, Reliable subsurface scattering for volume rendering in three-dimensional ultrasound imaging. Comput. Biol. Med. 117, 103608 (2020). DOI: 10.1016/j.compbiomed.2020.103608.
6. M. Nakao, S. K. Kurebaya, and T. Sugiura et al., Visualizing in vivo brain neural structures using volume rendered feature spaces. Comput. Biol. Med. 53, 85–93(2014). DOI: 10.1016/j.compbiomed.2014.07.007.
7. Z. Du et al., Spatio-temporal visualization of air–sea CO2 flux and carbon budget using volume rendering. Comput Geosci. 77, 77–86 (2015). DOI: 10.1016/j.cageo.2015.01.004.
8. H. K. Chai et al.Tomographic reconstruction for concrete using attenuation of ultrasound. NDT E Int. 44(2), 206–215 (2011). DOI: 10.1016/j.ndteint.2010.11.003.
9. S. Mattias and S. OleOn the implementation and effectiveness of morphological close-open and open-close filters for topology optimization. Struct Multidiscipl Optim. 54(1), 15–21 (2016). DOI: 10.1007/s00158-015-1393-y.
10. E. Okuyan et al., MaterialVis: material visualization tool using direct volume and surface rendering techniques. J. Mol. Graph. Model. 50, 50–60 (2014). DOI: 10.1016/j.jmgm.2014.03.007.
11. J. Luo and Q. WangA method for axis straightness error evaluation based on improved artificial bee colony algorithm. Int. J. Adv. Manuf. Technol. 71(5–8), 1501–1509 (2014). DOI: 10.1007/s00170-013-5567-8.
12. C. M. Shakarji and V. SrinivasanOptimality conditions for constrained least-squares fitting of circles, cylinders, and spheres to establish datums. J Comput Inf Sci Eng. 18(3), 031008 (2018). DOI: 10.1115/1.4039583.
13. N. ChernovFitting circles to scattered data: parameter estimates have no moments. Metrika 73(3), 373–384 (2011). DOI: 10.1007/s00184-009-0283-y.
14. Y. S. Volkov et al.Shape-preserving interpolation by cubic splines. Math. Notes 88(5–6), 798–805 (2010). DOI: 10.1134/S0001434610110209.
15. Y. Bing et al., B-spline based boundary conditions in the material point method. Comput Struct. 212, 257–274 (2019). DOI: 10.1016/j.compstruc.2018.11.003.
Usage | Shares |
---|---|
Total Views 18 Page Views |
Total Shares 0 Tweets |
18 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
18 |