
Early-onset damage in composite materials consists matrix cracking with certain regularity in distribution. However, the effect of the spatial arrangement of matrix cracks and the relationship between the direction of expansion of the cracks and the incident direction of ultrasound waves on the nonlinear parameter in nonlinear ultrasound detection is poorly understood. This study analyzes the nonlinear variation of matrix millimeter-scale and micron-scale cracks by experiment and finite-element-based numerical calculation to improve the damage evaluation of composite materials by nonlinear ultrasound and provide a reference for crack expansion prediction and imaging. The results show that millimeter and micron cracks follow the same trend, with more cracks and “dislocated” spatial arrangement, both providing positive contributions to the relative nonlinear parameter. However, when the incident direction of the ultrasound waves is orthogonal to the crack expansion direction, the evolution of the relative nonlinear parameter will follow an opposite trend with respect to the expansion size compared to when the incident direction and crack expansion direction are the same. We also propose a new nonlinear index (DI), the evolution of which can be used to identify the type of spatial distribution of the cracks in the matrix.
DOI: https://doi.org/10.1080/09349847.2022.2100950
1. W. Qu et al., Meas. Diagn 36 (5), 852–857 (2016). DOI: 10.16450/j.cnki.1004-6801.2016.05.006.
2. M. Meo, U. Polimeno, and G. Zumpano, Appl. Compos. Mater 15 (3), 115–126 (2008). DOI: 10.1007/s10443-008-9061-7.
3. Y. He et al., IEEE Trans. Ind. Inf 14 (12), 5575–5584 (2018). DOI: 10.1109/TII.2018. 2820816.
4. Y. Tie et al., Compos. Struct 236, 111869 (2020). DOI: 10.1016/j.compstruct.2020.111869.
5. C. He, Master dissertation, Changsha University of Science & Technology, 2020.
6. H. Zhang, Master dissertation, Harbin Institute of Technology, 2019.
7. W. Li et al., Meas. Sci. Technol 31 (1), 014001 (2019). DOI: 10.1088/1361-6501/ab382e.
8. A. De Luca et al., Compos. Part B Eng 138, 168–180 (2018). DOI: 10.1016/j.compositesb.2017.11.042.
9. Y. Yang et al., Mech. Syst. Signal Process 99, 760–773 (2018). DOI: 10.1016/j.ymssp.2017.07.011.
10. G. Kim et al., Ultrasonics 88, 64–71 (2018). DOI: 10.1016/j.ultras.2018.03.006.
11. M. H. Hafezi, R. Alebrahim, and T. Kundu, Ultrasonics 80, 47–57 (2017). DOI: 10.1016/j.ultras.2017.04.015.
12. Y. Shen, J. Wang, and W. Xu, Smart Mater. Struct 27 (10), 105044 (2018). DOI: 10.1088/1361-665X/aadd2d.
13. J. Wang et al., Mech. Syst. Signal Process 160, 107921 (2021). DOI: 10.1016/j.ymssp.2021.107921.
14. Y. Zhao et al., Ultrasonics 79, 60–67 (2017). DOI: 10.1016/j.ultras.2017.04.004.
15. N. Rauter, R. Lammering, and T. Kühnrich, Compos. Struct 152, 247–258 (2016). DOI: 10.1016/j.compstruct.2016.05.049.
16. F. Amerini and M. Meo, Struct. Health Monit 10 (6), 659–672 (2011). DOI: 10.1177/1475921710395810.
17. F. Mevissen and M. Meo, Aerospace 7 (6), 72 (2020). DOI: 10.3390/aerospace7060072.
18. Y. Zhao, Ph.D. dissertation, Southwest Jiaotong University, 2015.
19. J. A. TenCate and P. A. Johnson, in Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation, edited by T. Kundu (Springer, Cham, 2019),pp. 89–101.156 W. LI ET AL.
20. X. Wang, Ph.D. dissertation, Harbin Engineering University, 2012.
21. T. W. Clyne and D. Hull, An Introduction to Composite Materials (Cambridge University Press, USA, 2019).
22. B. Li, Master dissertation, Harbin Institute of Technology, 2014.
23. S. Qiu and J. Zhou, J. Aeronaut. Mater 38 (2), 110–117 (2018). DOI: 10.11868/j.1005-5053.2017.000076.
24. J. Ren et al., J. Mech. Strength 42 (5), 1207–1213 (2020). DOI: 10.16579/j.1001.9669.2020.
05.028.
25. S. Patra et al., Ultrasonics 96, 224–231 (2019). DOI: 10.1016/j.ultras.2019.01.002.
26. Z. Zhan et al., Presented at the 2020 6th Asia Conference on Mechanical Engineering and Aerospace Engineering (MEAE 2020), Chengdu, China, 2020 (unpublished). DOI: 10.1051/matecconf/202031601001
27. S. Liu et al., Ndt E Int 48, 46–53 (2012). DOI: 10.1016/j.ndteint.2012.02.009.
28. Y. Xu et al., Shock 40 (5), 126–135 (2021). DOI: 10.13465/j.cnki.jvs.2021.05.017.
29. K. Y. Jhang, Int. J. Precis. Eng. Manuf 10 (1), 123–135 (2009). DOI: 10.1007/s12541-009-0019-y.
30. J. Jiao et al., J. Beijing Univ. Technol 44 (5), 708–715 (2018). DOI: 10.11936/bjutxb2017090006.
31. W. Li, Y. Cho, and J. D. Achenbach, Smart Mater. Struct 21 (8), 085019 (2012). DOI: 10.1088/0964-1726/21/8/085019.
32. R. Wang et al., Compos. Struct 255, 112962 (2021). DOI: 10.1016/j.compstruct.2020.112962.
33. Y. Zeng, Master dissertation, Beijing Jiaotong University, 2008.
34. V. K. Chillara and C. J. Lissenden, Ultrasonics 54 (6), 1553–1558 (2014). DOI: 10.1016/j.ultras.2014.04.009.
35. P. Blanloeuil et al., Wave Motion 66, 132–146 (2016). DOI: 10.1016/j.wavemoti.2016.04.016.
36. P. Blanloeuil, A. Meziane, and C. Bacon, Ndt E Int 76, 43–51 (2015). DOI: 10.1016/j.ndteint.2015.08.001.
37. Y. Shi, Master dissertation, Dalian University of Technology, 2020.
Usage | Shares |
---|---|
Total Views 83 Page Views |
Total Shares 0 Tweets |
83 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
83 |