
Retaining walls are important structures for stabilizing slopes next to buildings. As with any structure, the parts used in retaining walls need to undergo periodic evaluation; as such, it is important to study different inspection techniques and methodologies. Ultrasonic testing has been used for material classification and quality control of the structural parts of various materials, including reinforced concrete. This study aims to evaluate the inspection of a retaining wall made with a lock and load system using ultrasonic pulse velocity. We considered the type of measurement, type of transducer, frequency of the transducer, coupling of the transducer on the inspected part, and distance between the transducers for the indirect measurements. The 45 kHz frequency was the most suitable for inspections before installation. It was found that the exponential surface transducer without coupling holes was the only one that allowed us to distinguish the plates by their velocity. For feasible field tests, the ratio between the indirect and direct velocity was 0.60. A distance of 300 mm between the transducers was the most suitable for indirect tests.
DOI: https://doi.org/10.32548/2022.me-04249
ABNT, 2013, NBR 8802: Concreto endurecido – determinação da velocidade de propagação da onda ultrassônica, Brazilian Association of Technical Standards, Rio de Janeiro
ABNT, 2015, NBR 5738: Concreto – procedimento para moldagem e cura de corpos de prova, Brazilian Association of Technical Standards, Rio de Janeiro
ABNT, 2018, NBR 16697: Cimento Portland – Requisitos, Brazilian Association of Technical Standards, Rio de Janeiro
ACI Committee 228, 2013, ACI PRC-228.2-13: Report on Nondestructive Test Methods for Evaluation of Concrete in Structures, American Concrete Institute, Farmington Hills, MI
Adamatti, D.S., A. Lorenzi, J.A. Chies, and L.C.P. Silva Filho, 2016, “Análi se de estruturas de concreto armado através da velocidade de propagação do pulso ultrassônico: estudo de parâmetros tecnológicos intervenientes,” IBRACON Structures and Materials Journal, Vol. 10, No. 2, https://doi.org/10.1590/S1983-41952017000200006
Ali, M., A. Liu, H. Sou, and N. Chouw, 2012, “Mechanical and Dynamic Properties of Coconut Fibre Reinforced Concrete,” Construction and Building Materials, Vol. 30, pp. 814–825, https://doi.org/10.1016/j.conbuildmat.2011.12.068
Anugonda, P., J.S. Wiehn, and J.A. Turner, 2001, “Diffusion of Ultrasound in Concrete,” Ultrasonics, Vol. 39, No. 6, pp. 429–435, https://doi.org/10.1016S0041-624X(01)00077-4
ASTM, 2016, ASTM C597-16: Standard Test Method for Pulse Velocity through Concrete, ASTM International, West Conshohocken, PA, https://doi.org/10.1520/C0597-16
Azreen, M.N., I.M. Pauzi, I. Nasharuddin, M.M. Haniza, J. Akasyah, A.D. Karsono, and V.Y. Lei, 2016, “Prediction of Concrete Compression Strength Using Ultrasonic Pulse Velocity,” AIP Conference Proceedings, Vol. 1704, No. 1, https://doi.org/10.1063/1.4940092
Bautz, R.S., G. Macioski, S.L. Weber, and A.R. Moreira, 2014, Análise da qualidade do concreto em pilares de viadutos por meio de ensaios não destrutivos para fins de reabilitação,” 1º Congresso brasileiro de patologia das fundações, Foz do Iguaçu – Paraná
Benjamim, C.V.S., 2006, “Avaliação experimental de protótipos deestruturas de contenção em solo reforçado com geotêxtil,” PhD thesis, University of São Paulo, Brazil, https://doi.org/10.11606/T.18.2006.tde-18082006-110207
Blitz, J., and G. Simpson, 1996, Ultrasonic Methods of Non-destructive Testing, Chapman & Hall
Bond, L.J., W.F. Kepler, and D.M. Frangopol, 2000, “Improved Assessment of Mass Concrete Dams Using Acoustic Travel Time Tomography, Part I — Theory,” Construction and Building Materials, Vol. 14, No. 3, pp. 133–146, https://doi.org/10.1016/S0950-0618(00)00014-3
Briones-Rocha, A.I.C., 2017, “Identificação de patologias em vigas de concreto armado utilizando inspeção por ultrassom,” Dissertação de Mestrado, Unicamp-Universidade Estadual de Campinas
Bucur, V., 2006, Acoustics of Wood, Springer
Bungey, J.H., S.G. Millard, and M.G. Grantham, 2006, Testing of Concrete in Structures, 4th ed., Taylor & Francis
Camara, L.A., M. Wons, I.C.A. Esteves, and R.A. Medeiros-Junior, 2019, “Monitoring the Self-Healing of Concrete from the Ultrasonic Pulse Velocity,” Journal of Composites Science, Vol. 3, No. 1, p. 16, https://doi.org/10.3390/jcs3010016
Carcaño, R.S., and J.B. Pereyra, 2003, “The Influence of the Physical Properties of Aggregates on the Ultrasound Pulse Technique in Predicting the Compressive Strength of Concrete,” Revista Técnica de la Facultad de Ingeniería, Universidad del Zulia, Vol. 26, No. 1
CEN, 2021, EN 12504-4: Testing Concrete in Structures – Part 4: Determination of Ultrasonic Pulse Velocity, European Committee for Standardization, Brussels
Chaix, J.F., C. Ack-Baraly, V. Garnier, and J. Salin, 2011, “Etude de la propagation des ondes de volume et de surface dans du béton,” Les COFREND
2011, National NDT Seminar & Exhibition, 24–27 May, Dunkerque, France
Chotard, T., N. Gimet-Breart, A. Smith, D. Fargeot, J.P. Bonnet, and C. Gault, 2001, “Application of Ultrasonic Testing to Describe the Hydration of Calcium Aluminate Cement at the Early Age,” Cement and Concrete Research, Vol. 31, No. 3, pp. 405–412, https://doi.org/10.1016/S0008‑8846(00)00446-4
Cruz, R., L.A. Quintero, and J. Herrera, 2014, “Evaluación del efecto de barras de refuerzo en concreto sobre las medidas de velocidad de pulso ultrasónico (VPU),” Revista Colombiana de Materiales, No. 5, pp. 107–113
Ferreira, G., 2011, “Estudo sobre fatores influentes nos resultados de ensaios não destrutivos em concreto endurecido,” Dissertação (Mestrado em Engenharias) - Universidade Federal de Uberlândia, Uberlândia-MG
Giacon, Jr., M., 2009, “Propagação de ondas de ultra-som em prototipos de postes tubulares de concreto armado,” Dissertação de Mestrado, Universidade Estadual de Campinas
Haach, V.G., and F.C. Ramirez, 2016, “Qualitative Assessment of Concrete by Ultrasound Tomography,” Construction and Building Materials, Vol. 119, pp. 61–70, https://doi.org/10.1016/j.conbuildmat.2016.05.056
Haach, V.G., and L.M. Juliani, 2017, “Possibilities of Using Ultrasound for the Technological Control of Concrete of Hollow-Core Slabs,” Construction and Building Materials, Vol. 133, pp. 409–415, https://doi.org/10.1016/j.conbuildmat.2016.12.121
Hager, I., H. Carré, and K. Krzemien, 2013, “Damage Assessment of Concrete Subjected to High Temperature by means of the Ultrasonic Pulse Velocity – UPV Method,” Studies and Researches, Vol. 32, No. 1, pp. 197–211
In, C.-W., J.-Y. Kim, K.E. Kurtis, and L.J. Jacobs, 2009, “Characterization of Ultrasonic Rayleigh Surface Waves in Asphaltic Concrete,” NDT & E International, Vol. 42, No. 7, pp. 610–617, https://doi.org/10.1016/j.ndteint.2009.04.007
Lee, H.K., K.M. Lee, Y.H. Kim, H. Yim, and D.B. Bae, 2004, “Ultrasonic In-Situ Monitoring of Setting Process of High-Performance Concrete,” Cement and Concrete Research, Vol. 34, No. 4, pp. 631–640, https://doi.org/10.1016/j.cemconres.2003.10.012
Malhotra, V.M, and N.J. Carino, 2003, Handbook on Nondestructive Testing of Concrete, 2nd ed., CRC Press
Masi, A., and M. Vona, 2010, “Experimental and Numerical Evaluation of the Fundamental Period of Undamaged and Damaged RC Framed Buildings,” Bulletin of Earthquake Engineering, Vol. 8, pp. 643–656, https://doi.org/10.1007/s10518-009-9136-3
Medeiros, A., 2007, “Aplicação do ultra-som na estimativa da profundidade de fendas superficiais e na avaliação da eficácia de injeções em elementos de concreto armado,” Dissertação de Mestrado em Engenharia Civil da Universidade Federal de Santa Catarina – UFSC
Mohammed, T.U., and M.N. Rahman, 2016, “Effect of Types of Aggregate and Sand-to-Aggregate Volume Ratio on UPV in Concrete,” Construction and Building Materials, Vol. 125, pp. 832–841, https://doi.org/10.1016/j.conbuildmat.2016.08.102
Murata, O., M. Tateyama, and F. Tatsuoka, 1990, “Steep Reinforced with a Planar Geotextile Having a Rigid Facing,” Fourth International Conference on Geotextiles, Geomembranes and Related Products, The Hauge, Netherlands, Vol. 1
Naik, T.R., V.M. Malhotra, and J.S. Popovics, 2004, “The Ultrasonic Pulse Velocity Method,” Handbook on Nondestructive Testing of Concrete, pp. 182–200
Paiva, M.A.C., 2017, “Análise das propriedades mecânicas nas primeiras idades do concreto de lajes alveolares utilizando o ensaio de ultrassom,” Tese de doutorado, Universidade de São Paulo, https://doi.org/10.11606/D.18.2018.tde-08122017-102900
Pardo, F., and E. Perez, 2010, “Evaluación del efecto de las barras de refuerzo del concreto sobre las medidas de velocidad de pulso ultrasónico,” Bucaramanga, Colombia, Universidad Industrial de Santander
Petro, Jr., J.T., and J. Kim, 2012, “Detection of Delamination in Concrete Using Ultrasonic Pulse Velocity Test,” Construction and Building Materials, Vol. 26, No. 1, pp. 574–582, https://doi.org/10.1016/j.conbuildmat.2011.06.060
Planès, T., and E. Larose, 2013, “A Review of Ultrasonic Coda Wave Interferometry in Concrete,” Cement and Concrete Research, Vol. 53, pp. 248–255, https://doi.org/10.1016/j.cemconres.2013.07.009
Polimeno, M.R., I. Roselli, V.A.M. Luprano, M. Mongelli, A. Tati, and G. de Canio, 2018, “A Non-destructive Testing Methodology for Damage Assessment of Reinforced Concrete Buildings after Seismic Events,” Engineering Structures, Vol. 163, pp. 122–136, https://doi.org/10.1016/j.engstruct.2018.02.053
Puncinotti, R., L. Hinterholz, A. D’elia, and R.A. De Loenzo, 2007, “Influence of Steel Reinforcement on Ultrasonic Pulses Velocity,” 4th International Conference on NDT, 11–14 October, Chania, Crete, Greece
Qixian, L., and J.H. Bungey, 1996, “Using Compression Wave Ultrasonic Transducers to Measure the Velocity of Surface Waves and Hence Determine Dynamic Modulus of Elasticity for Concrete,” Construction and Building Materials, Vol. 10, No. 4, pp. 237–242, https://doi.org/10.1016/0950-0618(96)00003-7
RILEM, 1972, NDT 1 - Testing of Concrete by the Ultrasonic Method, International Union of Laboratories and Experts in Construction Materials, Systems and Structures, https://doi.org/1617/2351580117.029
Rheinheimer, V., 2007, “Utilização de ensaios não destrutivos no controle tecnológico de execução de pavimentos de concreto tipo Fast Track,” Dissertação de Mestrado, Universidade Federal de SCatarina
Royer, D., and E. Dieulesaint, 2000, Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications, Springer Berlin, Heidelberg
Sahuinco, C.H.M., 2011, “Utilização de métodos não destrutivos e semi destrutivos na avaliação de pontes de concreto,” Dissertação de Mestrado, Universidade de São Paulo, https://doi.org/10.11606/D.3.2011.tde-01112011-123905
Shiotani, T., D.G. Aggelis, and O. Makishima, 2009, “Global Monitoring of Large Concrete Structures Using Acoustic Emission and Ultrasonic Techniques: Case Study,” Journal of Bridge Engineering, Vol. 14, No. 3, pp. 188–192
Smith, A., T. Chotard, N. Gimet-Breart, and D. Fargeot, 2002, “Correlation between Hydration Mechanism and Ultrasonic Measurements in an Aluminous Cement: Effect of Setting Time and Temperature on the Early Hydration,” Journal of the European Ceramic Society, Vol. 22, No. 12, pp. 1947–1958, https://doi.org/10.1016/S0955-2219(01)00530-1
Solís-Carcaño, R., and E.I. Moreno, 2008, “Evaluation of Concrete Made with Crushed Limestone Aggregate based on Ultrasonic Pulse Velocity,” Construction and Building Materials, Vol. 22, No. 6, pp. 1225–1231, https://doi.org/10.1016/j.conbuildmat.2007.01.014
Tatarinov, A., A. Rumjancevs, and V. Mironovs, 2019, “Assessment of Cracks in Pre-stressed Concrete Railway Sleepers by Ultrasonic Testing,” Procedia Computer Science, Vol. 149, pp. 324–330, https://doi.org/10.1016/j.procs.2019.01.143
Tatsuoka, F., 1993, Keynote Lecture: Roles of Facing Rigidity in Soil Reinforcing, Ochiai, Hayashi & Otani (EDS), Earth Reinforcement Practice, A.A. Balkema, Rotterdam, pp. 831–870
Villain, G., V. Garnier, Z.M. Sbartaï, X. Derobert, and J.-P. Balayssac, 2018, “Development of a Calibration Methodology to Improve the On-Site Non-destructive Evaluation of Concrete Durability Indicators,” Materials and Structures, Vol. 51, https://doi.org/10.1617/s11527-018-1165-4
Watanabe, S., K. Hishikawa, K. Kamae, and S. Namiki, 2018, “Study on Estimation of Compressive Strength of Concrete in Structure Using Ultrasonic Method,” Japan Architectural Review, Vol. 1, No. 1, pp. 87–95, https://doi.org/10.1002/2475-8876.1009
Ye, G., P. Lura, K. van Breugel, and A.L.A. Fraaij, 2004, “Study on the Development of the Microstructure in Cement-Based Materials by means of Numerical Simulation and Ultrasonic Pulse Velocity Measurement,” Cement and Concrete Composites, Vol. 26, pp. 491–497, https://doi.org/10.1016/S0958-9465(03)00081-7
Yu, T., J.-F. Chaix, L. Audibert, D. Komatitsch, V. Garnier, and J.-M. Hénault, 2019, “Simulations of Ultrasonic Wave Propagation in Concrete based on a Two-Dimensional Numerical Model Validated Analytically and Experimentally,” Ultrasonics, Vol. 92, pp. 21–34, https://doi.org/10.1016/j.ultras.2018.07.018
Usage | Shares |
---|---|
Total Views 156 Page Views |
Total Shares 0 Tweets |
156 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
156 |