Article Article
Materials Strength and Acoustic Nonlinearity: Case Study of CFRP

Nonlinear acoustic approach is assessed as a nondestructive tool for reconstructing stress-strain curves and quantifying the ultimate tensile strength for various orientations of composite materials. It is shown that a direct use of nonlinear acoustic data requires some adjustments to be applied in the quasi-static tensile conditions. The approach is validated by the calculations using the data for the two in-plane orientations of Carbon Fiber- Reinforced Plastic (CFRP) of totally different strengths. The higher strength arrangement manifests much lower nonlinearity, while the low strength orientation indicates the higher nonlinearity. The quantitative proof-of-concept test is based on the direct measurement of the acoustic nonlinearity for the out-of-plane orientation CFRP. Far higher nonlinearity measured correlates well with the lowest strength for this orientation being a reason of characteristic materials damage in the form of delaminations.

DOI: https://doi.org/10.1080/09349847.2021.2017531

References

1. N. E. Dowling, Mechanical Behavior of Materials Engineering Methods for Deformation, Fracture, and Fatigue, 4th ed., (Pearson Education Limited, England, 2013).

2. J. M. Gere and B. J. Goodno, Mechanics of Materials (USA: Global Engineering: Cengage Learning, 2012).

3. W. C. Jackson and R. H. Martin, in Composite Materials: Testing and Design 7th 333–354, ed., edited by E. T. Camponeschi Jr. (1993 An Interlaminar Tensile Strength Specimen).

4. K. N. Shivakumar, H. G. Allen, and V. S. Avva, AIAA J. 32(7), 1478–1484 (1992). DOI: 10.2514/3.12218.

5. R. Ulusay, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014 (Springer International, Switzerland, 2015). DOI: 10.1007/978-3-319-07713-0.

6. K. A. Naugol‘nykh and L. A. Ostrovskij, Nonlinear Wave Processes in Acoustics (Cambridge University Press, Cambridge, 1998).

7. K. R. McCall, J. Geoph. Res. 99(B2), 2591–2600 (1994). DOI: 10.1029/93JB02974.

8. K. Van Den Abeele and M. A. Breazeale, J. Acoust. Soc. Am. 99(3), 1430 (1996). DOI: 10.1121/1.414722.

9. L. A. Ostrovskii and A. M. Sutin, Appl. Math. Mech. 41(3), 531–537 (1997).

10. G. Yamamoto, K. Koizumi, and T. Okabe, in Chapter In: Open Access Books, (IntechOpen, 2020).

11. S. K. Chakrapani and D. J. Barnard, J. Acoust. Soc. Am. 141(2), 919 (2017). DOI: 10.1121/1.4976057.

12. B. Zhang et al., Prediction for the transverse tensile strength of unidirectional composites considering interface, Proc. 18th Int. Conf. Comp. Materials, South Korea, 2011.

13. M. Breazeale and J. Ford, J. Appl. Phys. 36(11), 3488 (1965). DOI: 10.1063/1.1703023.

14. G. Renaud, M. Talmant, and G. Marrelec, J. Appl. Phys. 120(13), 135102 (2016). DOI: 10.1063/1.4963829.

15. M. Liu et al., J. Appl. Phys. 112(2), 024908 (2012). DOI: 10.1063/1.4739746.

16. X. Jacob, C. Barrière, and D. Royer, Appl. Phys. Lett. 82(6), 886 (2003). DOI: 10.1063/1.

17. M. Vila et al., Ultrasonics 42(1–9), 1061–1065 (2004). DOI: 10.1016/j.ultras.2003.12.024.

18. Y. Zheng, R. Maev, and I. Solodov, Can. J. Phys. 77(12), 927–967 (1999). DOI: 10.1139/cjp-77-12-927.

19. P. Johnson, B. Zinszner, and P. Rasolofosaon, J. Geophys. Res. 101(B5), 11553–11564 (1996). DOI: 10.1029/96JB00647.

20. I. Solodov, D. Segur, and M. Kreutzbruck, Res. NDE. 30(1), 1–18 (2019).

21. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, 1970).

22. P. A. Elmore and M. A. Breazeale, Ultrasonics 41(9), 709–718 (2004). DOI: 10.1016/j.ultras.2003.11.001.

 

Metrics
Usage Shares
Total Views
39 Page Views
Total Shares
0 Tweets
39
0 PDF Downloads
0
0 Facebook Shares
Total Usage
39