Article Article
Influence of Core and Shield of Coil on Skin Depth in Eddy Current Testing

In eddy current (EC) nondestructive testing, coil is usually wound on core or covered by shield to improve the sensitivity of defect detection and ability of anti-interference of the probe. However, when core or shield is used, the magnetic field will be redistributed, resulting in a change in the speed of EC attenuation in the depth direction. The purpose of this paper is to reveal the influence of core and shield on skin depth of EC. The results of the finite element analysis show that applying core or shield on coil results in smaller skin depth and the skin depth decreases as the core or shield approaches the test sample. In addition, when both core and shield are used, the reduction of skin depth is minimal if both core and shield are ferromagnetic. The simulation results are verified by experiment.

DOI: https://doi.org/10.1080/09349847.2022.2050861

References

1. G. Mook, O. Hesse, and V. Uchanin, Mater. Test 49(5), 258–264 (2007). DOI: 10.3139/120.100810.

2. Z. Mottl, NDT & E Int 23(1), 11–18 (1990).

3. S. Jiao, X. Liu, and Z. Zeng, IEEE Trans. Magn 53(7), 6201608 (2017). DOI: 10.1109/TMAG.2017.2669181.

4. J. Yang et al., Prog. Electromagn. Res. M 65, 137–150 (2018). DOI: 10.2528/PIERM18011904.

5. Q. Tian and Z. Zeng, IEEE Trans. Magn 56(7), 6200406 (2020). DOI: 10.1109/TMAG.2020.2992098.

6. A. Jain, N. V. Sheth, and C. N. Lal, in 2015 International Conference on Computer, Communication Control (Indore, India, 2015), pp. 1–5.

7. T. Hacib et al., Stud. Comput. Intell 327, 185–199 (2021).

8. V. Arjun et al., Sens. Actuator A-Phys 226, 69–75 (2015). DOI: 10.1016/j.sna.2015.02.018.

9. D. Wei et al., Int. J. Adv. Manuf. Technol 98, 3185–3195 (2018).

10. Z. Liu et al., IEEE Sens. J 18(15), 6203–6216 (2018). DOI: 10.1109/JSEN.2018.2844957.

11. A. K. Soni et al., IETE Tech. Rev 33(4), 386–395 (2015). DOI: 10.1080/02564602.2015.1113145.

12. Z. Gong and S. Yang, IEEE Trans. Instrum. Meas 70, 3505209 (2021). DOI: 10.1109/TIM.2020.3036658.

13. H. Li et al., IEEE Trans. Ind. Inform 17(4), 2566–2578 (2021). DOI: 10.1109/TII.2020.2997836.

14. L. Dziczkowski and G. Tytko, IEEE Trans. Instrum. Meas 70, 6004906 (2021). DOI: 10.1109/TIM.2021.3057925.

15. C. H. Dinh et al., IEEE Trans. Instrum. Meas 70, 6007609 (2021). DOI: 10.1109/TIM.2021.3077997.

16. C. J. Hellier, in Electromagnetic Testing, 2nd ed. (McGraw-Hill Companies, New York, America, 1986), Vol. 4, pp. 106–117.

17. Y. Hu and S. Zhu, IOP Conf. Ser. Mater. Sci. Eng 751(1), 012005 (2020). DOI: 10.1088/1757-899X/751/1/012005.

18. C. Yang et al., IEEE Sens. J 19(7), 2490–2499 (2019). DOI: 10.1109/JSEN.2018.2886816.

19. X. Bi et al., Energies 14(15), 4636 (2021). DOI: 10.3390/en14154636.

 

Metrics
Usage Shares
Total Views
39 Page Views
Total Shares
0 Tweets
39
0 PDF Downloads
0
0 Facebook Shares
Total Usage
39