Article Article
In-Situ Laser Ultrasound-Based Rayleigh Wave Process Monitoring of DED-AM Metals

A laser ultrasound system is integrated into a directed energy deposition additive manufacturing (DED-AM) chamber to use Rayleigh waves for process monitoring in a noncontact layer-bylayer mode. Layers of Ti-6Al-4 V are deposited and then interrogated with ultrasonic Rayleigh waves that are sensitive to flaws and material nonuniformities. The novel integratedmaterial processing and monitoring system is described in detail. Process parameters are intentionally altered to create flaws and anomalies to demonstrate some capabilities of the monitoring system. The generation laser actuates either broadband pulses with a cylindrical lens or narrowband wave packets with a slit mask, which are received in through-transmission mode by a laser interferometer despite the inherent surface roughness. Flaws are detected through comparison to a reference state.

DOI: https://doi.org/10.1080/09349847.2022.2120652

References

1. K. V. Wong and A. Hernandez, ISRN Mech. Eng. (2012), 1–10 (2012). DOI: 10.5402/2012/208760.

2. M. Brandt, Laser Additive Manufacturing (Elsevier, 2017). DOI: 10.1016/C2014-0-03891-9.

3. H. Kim, Y. Lin, and T.-L. B. Tseng, Rapid Prototyp. J. 24(3), 645–669 (2018). DOI: 10.1108/RPJ-03-2017-0048.

4. M. A. Galindo-Fernández et al., Mater. Des. 160, 350–362 (2018). DOI: 10.1016/j.matdes.2018.09.028.

5. M. C. Brennan, J. S. Keist, and T. A. Palmer, J. Mater. Eng. Perform. 30(7), 4808–4818 (2021). DOI: 10.1007/s11665-021-05919-6.

6. Z. Snow, A. R. Nassar, and E. W. Reutzel, Addit. Manuf. 36, 101457 (2020). DOI: 10.1016/j.addma.2020.101457.

7. H. Gong et al., Addit. Manuf. 1, 87–98 (2014). DOI: 10.1016/j.addma.2014.08.002.

8. J. Mazumder, Procedia CIRP 36, 187–192 (2015). DOI:10.1016/j.procir.2015.01.009.

9. Z. Y. Chua, I. H. Ahn, and S. K. Moon, Int. J. Precis. Eng. Manuf. Technol. 4(2), 235–245 (2017). DOI: 10.1007/s40684-017-0029-7.

10. F. Honarvar and A. Varvani-Farahani, Ultrasonics 108, 106227 (2020). DOI: 10.1016/j.ultras.2020.106227.

11. E. Malekipour and H. El-Mounayri, Int. J. Adv. Manuf. Technol. 95(1–4), 527–550 (2018). DOI: 10.1007/s00170-017-1172-6.

12. D. Cerniglia et al., Ultrasonics 62, 292–298 (2015). DOI: 10.1016/j.ultras.2015.06.001.

13. E. W. Reutzel and A. R. Nassar, Rapid Prototyp. J. 21(2), 159–167 (2015). DOI: 10.1108/RPJ-12-2014-0177.

14. M. R. Boddu, R. G. Landers, and F. W. Liou, Control of laser cladding for rapid prototyping–A review, In: 2001 Int. Solid Free. Fabr. Symp., 2001.

15. S. K. Everton et al., Mater. Des. 95, 431–445 (2016). DOI: 10.1016/j.matdes.2016.01.099.

16. G. Tapia and A. Elwany, J. Manuf. Sci. Eng. 136 (6) (2014). DOI: 10.1115/1.4028540.

17. B. K. Foster et al., in A Brief Survey of Sensing for metal-based Powder Bed Fusion Additive Manufacturing, edited by K. G. Harding and T. Yoshizawa (2015), pp. 94890B. DOI: 10.1117/12.2180654.

18. A. Heralić, A.-K. Christiansson, and B. Lennartson, Opt. Lasers Eng. 50(9), 1230–1241 (2012). DOI: 10.1016/j.optlaseng.2012.03.016.

19. L. Song and J. Mazumder, IEEE Sens. J. 12(5), 958–964 (2012). DOI: 10.1109/JSEN.2011.2162316.

20. G. Bi et al., Opt. Lasers Eng. 44(12), 1348–1359 (2006). DOI: 10.1016/J.OPTLASENG.2006.01.009.

21. L. Song and J. Mazumder, IEEE Trans. Control Syst. Technol. 19 (6), 1349–1356 (2011). DOI: 10.1109/TCST.2010.2093901.

22. A. Fathi et al., Int. J. Adv. Manuf. Technol. 35(3–4), 280–292 (2007). DOI: 10.1007/s00170-006-0721-1.

23. M. Zeinali and A. Khajepour, J. Manuf. Sci. Eng. 132(4), 041016 (2010). DOI: 10.1115/1.4002023.

24. C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, Addit. Manuf. 21, 333–339 (2018). DOI: 10.1016/j.addma.2018.03.017.

25. C. B. Stutzman, W. F. Mitchell, and A. R. Nassar, J. Laser Appl. 33 (1), 012010 (2021). DOI: 10.2351/7.0000321.

26. A. J. Dunbar and A. R. Nassar, Virtual Phys. Prototyp. 13 (1), 14–19 (2018). DOI: 10.1080/17452759.2017.1392683.

27. M. Montazeri et al., IISE Trans 52 (5), 500–515 (2020). DOI: 10.1080/24725854.2019.1659525.

28. R. J. Smith et al., Meas. Sci. Technol. 25 (5), 55902 (2014). DOI: 10.1088/0957-0233/25/5/055902.

29. R. Patel et al., Appl. Sci. 8 (10), 1991 (2018). DOI: 10.3390/app8101991.

30. D. Pieris et al., Insight - Non-Destructive Test. Cond. Monit. 61 (3), 132–137 (2019). DOI: 10.1784/insi.2019.61.3.132.

31. P. Dryburgh et al., Addit. Manuf. 28, 236–251 (2019). DOI: 10.1016/j.addma.2019.04.015.

32. M. Hirsch et al., Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170194 (2017). DOI:10.1098/rspa.2017.0194.

33. D. Pieris et al., Mater. Des. 187, 108412 (2020). DOI: 10.1016/j.matdes.2019.108412.

34. D. Lévesque et al., Inspection of additive manufactured parts using laser ultrasonics, in: AIP Conf. Proc., AIP Publishing LLC, Minneapolis, Minnesota USA, 2016: p. 130003.

35. C. Millon et al., Weld. World. 62, 653–661 (2018). DOI: 10.1007/s40194-018-0567-9.

36. G. Davis et al., Int. J. Adv. Manuf. Technol. 102 (5–8), 2571–2579 (2019). DOI: 10.1007/s00170-018-3046-y.

37. J. Yu et al., Appl. Sci. 10(1), 365 (2020). DOI: 10.3390/app10010365.

38. S. Liu et al., Opt. Laser Technol. 146, 107543 (2022). DOI: 10.1016/j.optlastec.2021.107543.

39. Y. Zou et al., Opt. Laser Technol. 146, 107567 (2022). DOI: 10.1016/j.optlastec.2021.107567.

40. Y. Zhan et al., Mater. Sci. Eng. A. 762, 138093 (2019). DOI: 10.1016/j.msea.2019.138093.

41. Y. Zhan et al. Exp. Mech. (2021). DOI: 10.1007/s11340-021-00795-6.

42. S. K. Everton et al., Mater. Sci. Technol. (2016).

43. S. Everton et al., Jom 70 (3), 378–383 (2018). DOI: 10.1007/s11837-017-2661-7.

44. J. Zhang et al., Appl. Opt. 59 (33), 10380 (2020). DOI: 10.1364/AO.405284.

45. T. Dai et al., China Foundry 18 (4), 360–368 (2021). DOI: 10.1007/s41230-021-1063-1.

46. W. Xu, X. Li, and J. Zhang, Opt. Laser Technol. 150, 107918 (2022). DOI: 10.1016/j.optlastec.2022.107918.

47. W. Xu et al., NDT E Int. 125, 102548 (2022). DOI: 10.1016/j.ndteint.2021.102548.

48. Y. Jiang et al., IEEE Access 8, 186071–186079 (2020). DOI: 10.1109/ACCESS.2020.3030307.

49. S.-H. Park et al., Int. J. Mach. Tools Manuf. 166, 103745 (2021). DOI: 10.1016/j.ijmachtools.2021.103745.

50. Y. Zeng et al., Ultrasonics 110, 106273 (2021). DOI: 10.1016/j.ultras.2020.106273.

51. Y. Zeng et al., Measurement 188, 110597 (2022). DOI: 10.1016/j.measurement.2021.110597.

52. A. Volker et al., Rev. Prog. Quant. Nondestruct. Eval. (2019).

53. C. Bakre et al., J. Nondestruct. Eval. Diagnostics Progn. Eng. Syst. 1–31 (2022). 10.1115/1.4054539.

54. M. F. Hamilton, Y. A. Il’inskii, and E. A. Zabolotskaya, J. Acoust. Soc. Am. 105 (2), 639–651 (1999). DOI: 10.1121/1.426255.

55. A. A. Kolomenskii et al., Rev. Sci. Instrum. 74 (1), 448–452 (2003). DOI: 10.1063/1.1517188.

56. V. E. Gusev, W. Lauriks, and J. Thoen, J. Acoust. Soc. Am. 103, 3203–3215 (1998). DOI: 10.1121/1.423036.

57. V. E. Gusev, W. Lauriks, and J. Thoen, Phys. Rev. B. 55 (15), 9344–9347 (1997). DOI: 10.1103/PhysRevB.55.9344.

58. C. Bakre and C. J. Lissenden, Sensors 21 (16), 5495 (2021). DOI: 10.3390/s21165495.

59. S. Krishnaswamy. in: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, 1st ed., edited by T. Kundu Theory Appl. Laser Ultrason. Tech. Eng. Biol. Mater. Charact. Boca Raton, FL USA: CRC Press LLC, (2003). pp. 435–494.

60. M. Frigo and S. G. Johnson, FFTW: an adaptive software architecture for the FFT, in: Proc. 1998 IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP ’98 (Cat. No. 98CH36181), Seattle, Washington USA: IEEE, n.d.: pp. 1381–1384. DOI: 10.1109/ICASSP.1998.681704.

61. D. Nečas and P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Open Phys. 10 (1) (2012). Doi: 10.2478/s11534-011-0096-2.

62. S. Choi et al., J. Korean Phys. Soc. 60 (1), 26–30 (2012). DOI: 10.3938/jkps.60.26.

 

Metrics
Usage Shares
Total Views
24 Page Views
Total Shares
0 Tweets
24
0 PDF Downloads
0
0 Facebook Shares
Total Usage
24