Article Article
Effective Elastic Stiffness Tensor and Ultrasonic Velocities for 3D Printed Polycrystals with Pores and Texture

This paper focuses on the micromechanical modeling of pores and texture in 3D-printed polycrystals. A Gaussian-shape approximation is used to describe the orientation distribution function (ODF) and construct the initial homogenization model of the representative volume element (RVE). Spherical and ellipsoidal pores of varying sizes are added in stages to the RVE for homogenization, utilizing the modified Mori-Tanaka (MT) scheme in conjunction with the stepwise iterative method. Wherein, the mechanical interactions between pores and the spatial distribution of pore locations could be taken into account, when developing a cross-scale model from microstructure to macroelasticity. After obtaining the final elastic stiffness tensor, the Christoffel equation is combined with the Cardano’s formula to derive a closed form solution for ultrasonic velocities depending on microstructure. According to the numerical results, this method can effectively capture the behavior characteristics of pores and texture on the elastic stiffness tensor, average velocity, and velocity distribution.

DOI: https://doi.org/10.1080/09349847.2022.2151058

References

1. T. D. Ngo et al., Compos. B. Eng 143, 172–196 (2018). DOI: 10.1016/j.compositesb.2018.02.012.

2. M. R. Khosravani and T. Reinicke, Appl. Mater. Today. 20, 100689 (2020). DOI: 10.1016/j.apmt.2020.100689.

3. S. Gong, Z. Li, and Y. Y. Zhao, Acta. Mater. 59, 6820–6830 (2011). DOI: 10.1016/j.actamat.2011.07.041.

4. S. M. Iman et al., Int. J. Mod. Phys. C 33 (2), 2250028 (2022). DOI: 10.1142/S0129183122500280.

5. S. G. Abaimov et al., Compos. Struct. 223, 110801 (2019). DOI: 10.1016/j.compstruct.2019.03.073.

6. Y. Yang et al., Wear 428, 376–386 (2019). DOI: 10.1016/j.wear.2019.04.001.

7. M. Shamsujjoha et al., Metal. Mater. Trans. A 49 (7), 3011–3027 (2018). DOI: 10.1007/s11661-018-4607-2.

8. J. Suryawanshi, K. G. Prashanth, and U. Ramamurty, Mater. Sci. Eng.A. 696, 113–121 (2017). DOI: 10.1016/j.msea.2017.04.058.

9. T. Vilaro, C. Colin, and J. D. Bartout, Metal. Mater. Trans. A 42, 3190–3199 (2011). DOI: 10.1007/s11661-011-0731-y.

10. M. Huang and T. Zheng, Acta. Mech. 207, 135–143 (2009). DOI: 10.1007/s00707-008-0119-2.

11. T. Zhao, L. Zhang, and M. Huang, Acta. Mech. 230, 4175–4195 (2019). DOI: 10.1007/s00707-019-02485-w.

12. F. Yang, M. Huang, and J. Liu, Arch. Appl. Mech. 87, 1255–1267 (2017). DOI: 10.1007/s00419-017-1244-y.

13. L. Yang and S. I. Rokhlin, J. Nondestructive Eval. 32, 142–155 (2013). DOI: 10.1007/s10921-012-0167-3.

14. L. Yang, J. A. Turner, and Z. Li, J. Acoust. Soc. Am. 121, 50–59 (2007). DOI: 10.1121/1.2382749.

15. L. J and S. I. Rokhlin, Int J Solids Struct. 78, 110–124 (2016). DOI: 10.1016/j.ijsolstr.2015.09.011.

16. J. Li and S. I. Rokhlin, Wave Motion. 58, 145–164 (2015). DOI: 10.1016/j.wavemoti.2015.05.004.

17. J. Li, L. Yang, and S. I. Rokhlin, Ultrasonics 54, 1789–1803 (2014). DOI: 10.1016/j.ultras.2014.02.020.

18. G. Sha, Math. Mech. Solids 25, 1155–1171 (2020). DOI: 10.1177/1081286520905059.

19. R. Patel et al., Appl. Sci. 8 (10), 1991 (2018). DOI: 10.3390/app8101991.

20. Y. Liu et al., Ultrasonics 115, 106441 (2021). DOI: 10.1016/j.ultras.2021.106441.

21. G. Sha et al., J. Acoust. Soc. Am. 147 (4), 2442–2465 (2020). DOI: 10.1121/10.0001087.

22. J. He et al., Materialia 24, 101482 (2022). DOI: 10.1016/j.mtla.2022.101482.

23. C. M. Kube et al., J. Appl. Phys. 131 (22), 225107 (2022). DOI: 10.1063/5.0091561.

24. A. Khabouchi et al., Mater. Charact. 169, 110607 (2020). DOI: 10.1016/j.matchar.2020.110607.

25. X. García, M. Araujo, and E. Medina, Waves Random Media 14, 129 (2004). DOI: 10.1088/0959-7174/14/2/004v.

26. C. M. Kube and J. A. Turner, AIP Conf. Proc. 1650 (1), 926–934 (2015). DOI: 10.1063/1.4914698.

27. M. Ostoja-Starzewski, J. Appl. Mech 69, 25–35 (2002). DOI: 10.1115/1.1410366.

28. N. Kinoshita and T. Mura, Phys. Stat. Sol. A 5, 759–768 (1971). DOI: 10.1002/pssa.2210050332.

29. P. Armitage, Biometrika 36, 257–266 (1949). DOI: 10.2307/2332666.

30. R. Wituła and D. Słota, J. Math Anal. Appl. 363, 639–647 (2010). DOI: 10.1016/j.jmaa.2009.09.056.

31. A. Charmi et al., Mater. Sci. Eng. A 799, 140154 (2021). DOI: 10.1016/j.msea.2020.140154.

32. L. Thomsen, Geophysics 51, 1954–1966 (1986). DOI: 10.1190/1.1442051.

33. J. Kang et al., Mater. Design 191, 108608 (2020). DOI: 10.1016/j.matdes.2020.108608.

34. V. A. Popovich et al., Mater. Design 114, 441–449 (2017). DOI: 10.1016/j.matdes.2016.10.075.

35. L. Thijs et al., Acta. Mater. 61 (5), 1809–1819 (2013). DOI: 10.1016/j.actamat.2012.11.052.

36. J. Liu and A. C. To, Addit. Manuf. 16, 58–64 (2017). DOI: 10.1016/j.addma.2017.05.005.

37. W. Tang et al., Int. J. Met. Mater. 29, 1755–1769 (2022). DOI: 10.1007/s12613-022-2506-4.

 

Metrics
Usage Shares
Total Views
25 Page Views
Total Shares
0 Tweets
25
0 PDF Downloads
0
0 Facebook Shares
Total Usage
25