Article Article
Detection and Classification of Corrosion-related Damage Using Solitary Waves

This paper presents an inspection technique based on highly nonlinear solitary waves, wireless transducers, and machine learning. The technique was demonstrated on a plate subjected to accelerated corrosion while monitored with wired and wireless transducers, designed and assembled in laboratory. The tethered device consisted of a chain of spheres surmounted by a solenoid wired to and driven by a data acquisition system to control the first particle of the chain in order to induce the impact between the particle and the chain needed to generate the stress wave. The chain contained a piezoelectric wafer disk, also wired to the same data acquisition system, to sense the waves. The wireless transducers were identical to their wired counterparts, but the data acquisition system was replaced by a wireless node that communicated with a tablet via Bluetooth. Four wired and four wireless transducers were used to monitor the plate for nearly a week to detect the onset and progression of electrochemical corrosion. A few features were extracted from the time waveforms and then fed to a machine learning algorithm to classify damage. The results showed the effectiveness of the proposed approach at labeling defects close to the transducers.

DOI: https://doi.org/10.1080/09349847.2022.2088913

References

1. V. F. Nesterenko, J. Appl. Mech. Tech. Phys.(Engl. Transl.) 24 (5), 136–148 , (1984).

2. A. Lazaridi and V. F. Nesterenko, J. Appl. Mech. Tech. Phys. 26(3), 405–408 (1985). DOI: 10.1007/BF00910379.

3. V. Nesterenko, Dynamics of Heterogeneous Materials. New York: Springer Science & Business Media, (2013).

4. C. Coste, E. Falcon, and S. Fauve, Phys. Rev. E 56(5), 6104 (1997). DOI: 10.1103/PhysRevE.56.6104.

5. A. Chatterjee, Phys. Rev. E 59(5), 5912 (1999). DOI: 10.1103/PhysRevE.59.5912.

6. S. Sen et al., Phys. Rep. 462(2), 21–66 (2008). DOI: 10.1016/j.physrep.2007.10.007.

7. A. Rosas and K. Lindenberg, (Physics Reports, 2018), Vol. 735. 1–37

8. M. A. Hasan and S. Nemat-Nasser, J. Mech. Phys. Solids 101, 1–9 (2017). DOI: 10.1016/j.jmps.2017.01.004.

9. C. Daraio et al., Phys. Rev. E 72(1), 016603 (2005). DOI: 10.1103/PhysRevE.72.016603.

10. E. Kim and J. Yang, Funct. Compos. Struct. 1(1), 012002 (2019). DOI: 10.1088/2631-6331/ab0c7e.

11. W. Zhang and J. Xu, Extreme Mech. Lett. 40, 100972 (2020). DOI: 10.1016/j.eml.2020.100972.

12. M. A. Porter et al., Physica D 238(6), 666–676 (2009). DOI: 10.1016/j.physd.2008.12.010.

13. D. Ngo, D. Khatri, and C. Daraio, Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 84(2 Pt 2), 026610 (2011). DOI: 10.1103/PhysRevE.84.026610.

14. D. Ngo et al., Granular Matter. 15(2), 149–155 (2013). DOI: 10.1007/s10035-012-0377-5.

15. C. Daraio et al., Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 73(2 Pt 2), 026610 (2006). DOI: 10.1103/PhysRevE.73.026610.

16. S. Sen, M. Manciu, and J. D. Wright, Phys. Rev. E 57(2), 2386 (1998). DOI: 10.1103/PhysRevE.57.2386.

17. J. Hong and A. Xu, Appl. Phys. Lett. 81(25), 4868–4870 (2002). DOI: 10.1063/1.1522829.

18. S. Job et al., Phys. Rev. Lett. 94(17), 178002 (2005). DOI: 10.1103/PhysRevLett.94.178002.

19. J. Yang et al., Smart Mater. Struct. 21(1), 012002 (2011). DOI: 10.1088/0964-1726/21/1/012002.

20. J. Yang, F. Restuccia, and C. Daraio, Highly nonlinear granular crystal sensor and actuator for delamination detection in composite structures. in International workshop on structural health monitoring, Stanford, CA. (2011).

21. J. Yang et al., Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 83(4 Pt 2), 046606 (2011). DOI: 10.1103/PhysRevE.83.046606.

22. X. Ni and P. Rizzo, Exp. Mech. 52(9), 1493–1501 (2012). DOI: 10.1007/s11340-012-9595-3.

23. X. Ni and P. Rizzo, Mater. Eval. 70 (5), (2012).

24. X. Ni et al., Monitoring the Hydration of Cement Using Highly Nonlinear Solitary Waves (NDT & E International, 2012), Vol. 52. 76–85

25. J. Yang et al., Int. J. Solids Struct. 49(13), 1463–1471 (2012). DOI: 10.1016/j.ijsolstr.2012.02.013.

26. L. Cai, P. Rizzo, and L. Al-Nazer, Int. J. Solids Struct. 50(25–26), 4173–4183 (2013). DOI: 10.1016/j.ijsolstr.2013.08.018.

27. B. Berhanu, P. Rizzo, and M. Ochs, J. Appl. Mech. 80 (1), (2013). DOI: 10.1115/1.4006947.

28. E. Kim et al., Smart Mater. Struct. 24(12), 125004 (2015). DOI: 10.1088/0964-1726/24/12/125004.

29. T. Singhal et al., Smart Mater. Struct. 26(5), 055011 (2017). DOI: 10.1088/1361-665X/aa6823.

30. A. Schiffer et al., Int. J. Solids Struct. 118, 204–212 (2017). DOI: 10.1016/j.ijsolstr.2017.03.018.

31. W. Deng et al., Sensors 16(1), 5 (2016). DOI: 10.3390/s16010005.

32. A. Nasrollahi et al., Nondestr.Test. Eval. 32(4), 381–399 (2017). DOI: 10.1080/10589759.2016.1254212.

33. A. Nasrollahi and P. Rizzo, J. Acoust. Soc. Am. 144(4), 2201–2212 (2018). DOI: 10.1121/1.5056172.

34. A. Nasrollahi, P. Rizzo, and M. S. Orak, J. Appl. Mech. 85 (3), (2018). DOI: 10.1115/1.4038990.

35. A. Schiffer and T.-Y. Kim, Int. J. Mech. Sci. 151, 181–191 (2019). DOI: 10.1016/j.ijmecsci.2018.11.020.

36. A. Nasrollahi, R. Lucht, and P. Rizzo, Exp. Mech. 59(1), 65–77 (2019). DOI: 10.1007/s11340-018-0432-1.

37. A. Nasrollahi and P. Rizzo, . J. Nondestr. Eval. Diagn. Progn. Eng. Syst. 2 (3), (2019). DOI: 10.1115/1.4043949.

38. A. Schiffer et al., Int. J. Mech. Sci. 170, 105350 (2020). DOI: 10.1016/j.ijmecsci.2019.105350.

39. A. Nasrollahi and P. Rizzo, J. Mech. Behav. Biomed. Mater. 103, 103534 (2020). DOI: 10.1016/j.jmbbm.2019.103534.

40. S. Yoon et al., J. Mech. Behav. Biomed. Mater. 109, 103805 (2020). DOI: 10.1016/j.jmbbm.2020.103805.

41. H. Jalali and P. Rizzo, Int. J. Mech. Sci. 208, 106676 (2021). DOI: 10.1016/j.ijmecsci.2021.106676.

42. S. Yoon et al., Biomech. Model. Mechanobiol. 20, 1733–1749. (2021).

43. H. Jalali and P. Rizzo, Smart Mater. Struct. 29(8), 085051 (2020). DOI: 10.1088/1361-665X/ab9b5b.

44. H. Jalali et al., Mater. Eval. 79 (10), (2021).

45. J. P. Villacreses et al., (Transportation Geotechnics, 2021), Vol. 26. 100437

46. S. Yoon et al., (Composite Structures, 2021), Vol. 256. 113071

47. B. Zheng, P. Rizzo, and A. Nasrollahi, Struct. Health Monit. 19(4), 1160–1174 (2020). DOI: 10.1177/1475921719876089.

48. A. Eslami et al., Corros. Sci. 52(11), 3750–3756 (2010). DOI: 10.1016/j.corsci.2010.07.025.

49. R. C. Team, R Development Core Team. Vienna, Austria: RA Lang Environ Stat Comput, (2013), Vol. 55. 275–286

50. M. Kuhn, J. Stat. Softw. 28(1), 1–26 (2008). DOI: 10.18637/jss.v028.i05.

51. J. Friedman, T. Hastie, and R. Tibshirani, J. Stat. Softw. 33(1), 1 (2010). DOI: 10.18637/jss.v033.i01.

52. C. Saunders, A. Gammerman, and V. Vovk, Ridge regression learning algorithm in dual variables. ICML '98: Proceedings of the Fifteenth International Conference on Machine Learning. 1998.

53. R. Tibshirani, J. R. Stat. Soc. B 58(1), 267–288 (1996).

54. C. M. Bishop, Neural Networks for Pattern Recognition. Cambridge, UK: Oxford university press, (1995).

55. T. Cover and P. Hart, IEEE Trans. Inf. Theory 13(1), 21–27 (1967). DOI: 10.1109/TIT.1967.1053964.

56. J. R. Quinlan, C4. 5: Programs for Machine Learning. San Mateo, CA: Elsevier, (2014).

57. L. Breiman et al., Classification and Regression Trees. New York: Routledge, (2017).

58. M. Kuhn and K. Johnson, Applied Predictive Modeling. New York: Springer, (2013), Vol. 26.

59. R. Misra et al., Sensors 20(11), 3016 (2020). DOI: 10.3390/s20113016.

 

Metrics
Usage Shares
Total Views
54 Page Views
Total Shares
0 Tweets
54
0 PDF Downloads
0
0 Facebook Shares
Total Usage
54