
In order to develop methods for diagnosing the stress-strain state of steel products in view of their history in the form of cyclic loading we study the effect of previous zero-to-tension cyclic loading on the magnetic behavior of the 08G2B steel under subsequent static elastic tension along the same direction. Magnetic measurements were made both in a closed magnetic circuit and by means of attached magnetic devices along and across the tension axis. The history in the form of previous cyclic tension affects the behavior of the magnetic parameters of the material under subsequent elastic static tension. Particularly, the growing number of preloading cycles is accompanied by an increase in the magnitude of applied static stresses at which there are extrema of the magnetic characteristics measured longitudinally. This shift of the extrema of the magnetic parameters is explained by residual compressive stresses increasing with the number of previous tension cycles. At applied tensile stresses ranging between 0 and 100 MPa, the magnetic characteristics measured longitudinally on specimens cyclically loaded with various numbers of cycles vary uniquely. The difference in the values of the coercive force measured longitudinally and crosswise decreases monotonically at applied stresses ranging between 0 and 200 MPa.
DOI: https://doi.org/10.1080/09349847.2021.2002487
1. F. Saghir et al., Polym. Testing. 93, 107001 (2021). DOI: 10.1016/j.polymertesting.2020.107001.
2. E. J. Ekoi, A. N. Dickson, and D. P. Dowling, Compos. Part B. Eng. 212, 108704 (2021). DOI: 10.1016/j.compositesb.2021.108704.
3. S. Gohari et al., Arch. Civ. Mech. Eng. 19, 1235 (2019). DOI: 10.1016/j.acme.2019.06.009.
4. G. R. Chen et al., NDT E. Int. 110, 102208 (2020). DOI: 10.1016/j.ndteint.2019.102208.
5. J. Grum, V. Jemec, and A. Beci, Insight. 42, 782 (2000).
6. L. Piotrowski et al., J. Magn. Magn. Mater. 321, 2331 (2009). DOI: 10.1016/j.jmmm.2009.02.028.
7. A. Adamczak-Bugno, G. Swit, and A. Krampikowska, IOP Conf. Ser.: Mater. Sci. Eng. 471, 032041 (2019). DOI: 10.1088/1757-899X/471/3/032041.
8. H. Hizli and C. Hakan, RNDE. 29, 303 (2018).
9. M. Roskosz and K. Fryczowski, J. Magn. Magn. Mater. 499, 166272 (2020). DOI: 10.1016/j.jmmm.2019.166272.
10. L. P. Karjalainen, M. Moilanen, and R. Rautioaho, Mater. Evolution. 37, 45 (1979).
11. H.-E. Chen et al., Mater. Trans. 55, 1806 (2014). DOI: 10.2320/matertrans.M2014173.
12. F. Qiu et al., J. Magn. Magn. Mater. 432, 250 (2017). DOI: 10.1016/j.jmmm.2017.01.076.
13. V. Vengrinovich et al., J. Nondestruct. Eval. 38, 52 (2019). DOI: 10.1007/s10921-019-0576-7.
14. D. C. Jiles, NDT Int. 21, 311 (1988).
15. L. L. Mierczak, D. C. Jiles, and G. Fantoni, IEEE Trans. Magn. 47, 459 (2011). DOI: 10.1109/TMAG.2010.2091418.
16. J. H. Kurz, K. Szielasko, and R. Tschuncky, J. Infrastruct. Syst. 23, B4016009 (2017). DOI: 10.1061/(ASCE)IS.1943-555X.0000337.
17. S. Takahashi et al., NDT E. Int. 91, 54 (2017). DOI: 10.1016/j.ndteint.2017.06.001.
18. G. S. Schajer, Practical Residual Stress Measurement Methods (John Wiley & Sons Ltd, Vancouver, Canada, 2013).
19. E. S. Gorkunov et al., Russ. J. Nondest. Test. 51, 563 (2015). DOI: 10.1134/S1061830915090053.
20. E. S. Gorkunov et al., Russ. J. Nondest. Test. 53, 636 (2017). DOI: 10.1134/S1061830917090066.
21. S. Suresh, Fatigue of Materials, 2nd ed., (Cambridge University Press, New York, 2004).
22. Y. Murakami and K. J. Miller, Int. J. Fatig. 27, 991 (2005). DOI: 10.1016/j.ijfatigue.2004.10.009.
23. X. Guo and D. L. Atherton, IEEE Tran. Magn. 31, 2510 (1995). DOI: 10.1109/20.406553.
24. S. Bao et al., Exp. Mech. 56, 1017 (2016). DOI: 10.1007/s11340-016-0147-0.
25. E. S. Gorkunov et al., Russ. J. Nondest. Test. 52, 727 (2016). DOI: 10.1134/S1061830916120093.
26. N. A. Lookin and L. S. Rubin, AIP Conf. Proc. 2176, 020003 (2019).
27. E. S. Gorkunov et al., Russ. J. Nondest. Test. 55, 827 (2019). DOI: 10.1134/S1061830919110044.
28. R. M. Bozorth, Ferromagnetism (Wiley-IEEE Press, New York, 1978).
29. J. M. Makar and B. K. Tanner, NDT E. Int. 31, 117 (1998). DOI: 10.1016/S0963-8695(97)00008-X.
30. O. Perevertov, J. Magn. Magn. Mater. 428, 223 (2017). DOI: 10.1016/j.jmmm.2016.12.040.
31. E. S. Gorkunov et al., Russ. J. Nondest. Test. 46, 638 (2010). DOI: 10.1134/S1061830910090032.
32. V. G. Kuleev and E. S. Gorkunov, Russ. J. Nondest. Test. 33, 741 (1997).
33. F. Fiorillo, M. Kupferling, and C. Appino, Metals. 8, 5 (2018).
34. J. M. Makar and B. K. Tanner, J. Magn. Magn. Mater. 222, 291 (2000). DOI: 10.1016/S0304-8853(00)00558-8.
35. J. Pal’a et al., J. Magn. Magn. Mater. 310, 57 (2007). DOI: 10.1016/j.jmmm.2006.07.029.
36. A. P. Nichipuruk et al., Russ. J. Nondest. Test. 50, 566 (2014). DOI: 10.1134/S1061830914100088.
37. V. G. Kuleev et al., Russ. J. Nondest. Test. 51, 738 (2015). DOI: 10.1134/S1061830915120062.
38. P. I. Anderson, A. J. Moses, and H. J. Stanbury, IEEE Trans. Magn. 43, 3467 (2007). DOI: 10.1109/TMAG.2007.893534.
39. E. S. Gorkunov et al., Russ. J. Nondest. Test. 49, 584 (2013). DOI: 10.1134/S1061830913100057.
40. M. B. S. Dias and F. J. G. Landgraf, J. Magn. Magn. Mater. 504, 166566 (2020). DOI: 10.1016/j.jmmm.2020.166566.
41. M. Wun-Fogle et al., IEEE Trans. Magn. 45, 4112 (2009). DOI: 10.1109/TMAG.2009.2021531.
42. R. Becker, and W. Doring, Ferromagnetismus (Germany: Springer, Berlin, 1939).
43. N. Leuning et al., J. Magn. Magn. Mater. 417, 42 (2016). DOI: 10.1016/j.jmmm.2016.05.049.
44. N. M’zali et al., J. Magn. Magn. Mater. 500, 166299 (2020).
45. T. Yamasaki, S. Yamamoto, and M. Hirao, NDT & E Int. 29, 263 (1996). DOI: 10.1016/S0963-8695(96)00028-X.
46. J. M. Makar and B. K. Tanner, J. Magn. Magn. Mater. 184, 193 (1998). DOI: 10.1016/S0304-8853(97)01129-3.
47. V. N. Kostin et al., Russ. J. Nondest. Test. 45, 786 (2009). DOI: 10.1134/S1061830909110059.
Usage | Shares |
---|---|
Total Views 27 Page Views |
Total Shares 0 Tweets |
27 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
27 |