
The propagation velocity of a transverse ultrasonic wave is influenced by the temperature of the testing materials. In other words, it directly affects the accuracy of thickness measurement and flaw detection as well as the validity of the focal law during the high-temperature ultrasonic inspection. For the above reasons, an electromagnetic acoustic transducer (EMAT) was adopted in this study to measure the transverse ultrasonic velocities of several metallic specimens when heated to the temperatures of the order of 700°C. EMAT was particularly favored for use in this study owing to its non-contact and couplant-free characteristics. The reliability of the collected data and experimental stability were verified via the establishment of a high-temperature experimental system as well as analysis of the measurement error and uncertainty. By comparing ferromagnetic and non-ferromagnetic materials using this system, it can be found that the transverse ultrasonic velocity of ferromagnetic materials decreases in a nonlinear “step-like” manner with the temperature. Therefore, results obtained from this study indicates that the velocity–temperature relationship of different materials does not follow the same law. Besides, the curves tested in this study can serve as a ready references to facilitate nondestructive inspections of materials at high temperatures.
DOI: https://doi.org/10.1080/09349847.2020.1807077
J. Brizuela et al., NDT & E Int. 101, 1–16 (2019). DOI: 10.1016/j.ndteint.2018.09.002.
S.-P. Song and Y.-J. Ni, Chin. J. Mech. Eng. 31 (1), 25–34 (2018). DOI: 10.1186/s10033-018-0280-z.
J. Zhang, B. W. Drinkwater, and P. D. Wilcox, J. Nondestruct. Eval. 29 (4), 222–232 (2010). DOI: 10.1007/s10921-010-0080-6.
J. Zhang, B. W. Drinkwater, and P. D. Wilcox, IEEE Trans. UFFC 60 (8), 1732–1745 (2013). DOI: 10.1109/TUFFC.2013.2754.
C. T. Searfass, B. R. Tittmann, and D. K. Agrawal, AIP Conf. Proc. 1096 (1), 1751–1758 (2009).
A. Weidenfelder et al., Mater. Res. Soc. Symp. Proc. 1519, 3-30 (2013). Doi: 10.1557/opl.2012.1760.
A. Mohimi et al., Key Eng. Mater. 543, 117–120 (2013). DOI: 10.4028/www.scientific.net/KEM.543.117.
R. C. Turner et al., Appl. Acoust. 41 (4), 299–324 (1994). DOI: 10.1016/0003-682X(94)90091-4.
A. Baba, C. T. Searfass, and B. R. Tittmann, Appl. Phys. Lett. 97 (23), 232901 (2010). DOI: 10.1063/1.3524192.
F. B. Cegla et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 (1), 156–167 (2011). DOI: 10.1109/TUFFC.2011.1782.
F. B. Cegla, A. J. C. Jarvis, and J. O. Davies, NDT & E Int. 44 (8), 669–679 (2011). DOI: 10.1016/j.ndteint.2011.07.003.
T. Stratoudaki, M. Clark, and P. D. Wilcox, AIP Conf. Proc. 1806 (1), 20–22 (2017).
N. Fuse, K. Kaneshige, and H. Watanabe, Mater. Trans. 55 (7), 1011–1016 (2014). DOI: 10.2320/matertrans.I-M2014811.
K. S. Zhang and Z. G. Zhou, NDT & E Int. 97, 42–50 (2018). DOI: 10.1016/j.ndteint.2018.03.006.
H. Huan et al., NDT & E Int. 102, 84–89 (2019). DOI: 10.1016/j.ndteint.2018.11.006.
D. Maclauchlan et al., 16th World Conference on NDT (Montreal, Canada, Aug, 2004) (2004), pp. 1154–1161.
F. Passarelli, G. Alers, and R. Alers, AIP Conf. Proc. 1430 (1), 28–37 (2012).
M. Hirao and H. Ogi, Electromagnetic Acoustic Transducers (Springer, Tokyo, Japan, 2016).
J. Tkocz, D. Greenshields, and S. Dixon, NDT & E Int. 102, 47–55 (2019). DOI: 10.1016/j.ndteint.2018.11.001.
I. Baillie et al., Insight-Non-Destruct. Test. Condition Monitor. 49 (2), 87–92 (2007). DOI: 10.1784/insi.2007.49.2.87.
H. Nakamoto et al., Electromagn. Nondestruct. Eval. 39, 256–262 (2014).
H. Francisco and D. Steve, NDT & E Int. 43 (2), 171–175 (2010). DOI: 10.1016/j.ndteint.2009.10.009.
H. Francisco and D. Steve, Insight 53 (2), 96–99 (2011). DOI: 10.1784/insi.2011.53.2.96.
S. E. Burrows, Y. Fan, and S. Dixon, NDT & E Int. 68, 73–77 (2014). DOI: 10.1016/j.ndteint.2014.07.009.
R. Urayama, T. Uchimoto, and T. Takagi, Appl. Electromagn. Mechanics 33 (3–4), 1317–1327 (2010). DOI: 10.3233/JAE-2010-1256.
S. S. Lee and B. Y. Ahn, Nondestruct. Test. Eval. 7 (1–6), 253–261 (1992). DOI: 10.1080/10589759208953004.
K. Whittington, Phys. Technol. 9 (2), 62–67 (1978). DOI: 10.1088/0305-4624/9/2/I02.
Y. Qin et al., AIP Conf. Proc. 1430 (1), 971–978 (2012).
N. Lunn, S. Dixon, and M. D. G. Potter, NDT & E Int. 89, 74–80 (2017). DOI: 10.1016/j.ndteint.2017.04.001.
M. Hirao and H. Ogi, EMATs for Science and Industry: Noncontacting Ultrasonic Measurements (Springer Science and Business Media, NewYork, 2013).
R. Ribichini et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (12), 2808–2817 (2010). DOI: 10.1109/TUFFC.2010.1754.
L. Zhichao et al., 5th IEEE Conf. Indust. Electron. Appl. 1, 99–103 (2010).
S. Wang et al., Nondestruct. Test. Eval. 29 (4), 269–282 (2014). DOI: 10.1080/10589759.2014.941838.
X. Jian et al., Sens. Actuators A Phys. 148 (1), 51–56 (2008). DOI: 10.1016/j.sna.2008.07.004.
W. Ren et al., NDT & E Int. 102, 34–43 (2019). DOI: 10.1016/j.ndteint.2018.10.001.
R. B. Thompson, IEEE Trans. Sonics Ultrason. 25 (1), 7–15 (1978). DOI: 10.1109/T-SU.1978.30979.
S. Dixon et al., in Review of Progress in Quantitative Nondestructive Evaluation (Springer, Boston, MA, 1999), pp. 1995–2000.
D. K. Mak and J. Gauthier, Ultrasonics 31 (4), 245–249 (1993). DOI: 10.1016/0041-624X(93)90017-T.
Usage | Shares |
---|---|
Total Views 74 Page Views |
Total Shares 0 Tweets |
74 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
74 |