
The increasing use of stainless steel in industrial structures can be attributed to its excellent mechanical properties at elevated temperatures. Martensitic grade stainless-steel is used, for example, to manufacture steam turbine blades in power plants. The failure of these turbine blades can result in equipment damage contributing to expensive plant failures and safety concerns. Degradation and structural failure of these blades is largely attributed to material fatigue, at the microstructure level. Hence, it is important to evaluate the level of fatigue prior to the initiation of macro defects to ensure the viability of these components. Conventional non-destructive evaluation (NDE) techniques such as ultrasonic testing and eddy current testing are suitable in detection of macro defects such as cracks, but not very effective in evaluating degradation of the material at a microstructure scale. This article investigates the feasibility of the nonlinear eddy current (NLEC) technique to detect fatigue in martensitic grade stainless-steel samples along with a methodology to classify the samples. K-medoids clustering algorithm and genetic algorithm are used to classify the samples according to the severity of fatigue. Initial results indicate that stainless-steel samples, in different stages of fatigue, can be classified into broad categories of low, mid, and high levels of fatigue.
DOI: https://doi.org/10.1080/09349847.2021.2017093
1. S. Xie et al., Materials Transactions 54(6), 964–968 (2013). DOI: 10.2320/matertrans.M2013034.
2. Y.-L. Lee, M. E. Barkey, and H.-T. Kang, Metal Fatigue Analysis Handbook: Practical Problem-solving Techniques for Computer-aided Engineering (Elsevier, 2011).
3. B. Wisner, K. Mazur, and A. Kontsos, Fatigue & Fracture of Engineering Materials & Structures 43(5), 859–878 (2020). DOI: 10.1111/ffe.13208.
4. V. Terent’ev, Stages in fatigue failure of metallic materials (Metally (Moscow)) (1996), pp. 14–20.
5. Y. Bai, Marine Structural Design (Elsevier, 2003).
6. L. Cartz, “Nondestructive Testing” (1995).
7. A. W. Mello et al., Materials Science and Engineering: A 661, 187–197 (2016). DOI: 10.1016/j.msea.2016.03.012.
8. J. Vasco-Olmo et al., Fatigue & Fracture of Engineering Materials & Structures 38(2), 223–237 (2015). DOI: 10.1111/ffe.12136.
9. A. Iziumova and O. Plekhov, Fatigue & Fracture of Engineering Materials & Structures 37(12), 1330–1337 (2014). DOI: 10.1111/ffe.12202.
10. B. Wisner et al., Experimental Mechanics 55(9), 1705–1715 (2015). DOI: 10.1007/s11340-015-0074-5.
11. I. Sevostianov et al., International Journal of Fracture 164(1), 159–166 (2010). DOI: 10.1007/s10704-010-9487-4.
12. Y. Y. Lim and C. K. Soh, Smart Materials and Structures 20(12), 125001 (2011). DOI: 10.1088/0964-1726/20/12/125001.
13. L. Bodelot et al., Mechanics of Materials 43(11), 654–670 (2011). DOI: 10.1016/j.mechmat.2011.08.006.
14. N. Castaneda et al., Composites Part A: Applied Science and Manufacturing 98,76–89 (2017). DOI: 10.1016/j.compositesa.2016.11.022.
15. P. Dobroň et al., Materials Science and Engineering: A 462(1–2), 307–310 (2007). DOI: 10.1016/j.msea.2005.12.111.
16. F. Di Gioacchino and J. Q. Da Fonseca, Experimental Mechanics 53(5), 743–754 (2013). DOI: 10.1007/s11340-012-9685-2.
17. A. Kontsos et al., Acta Materialia 59(14), 5716–5727 (2011). DOI: 10.1016/j.actamat.2011.05.048.
18. G. Dobmann, Physical basics and industrial applications of 3MA–micromagnetic multi-parameter microstructure and stress analysis, Fraunhofer IZFP, Saarbrcken, Germany (2007), pp. 1–17.
19. G. Dobmann et al., International Journal of Microstructure and Materials Properties 9(3–5), 348–359 (2014). DOI: 10.1504/IJMMP.2014.066915.
20. S. Zhang, Micromagnetic and Multiparameter Measurement for Microstructural Material Properties Characterization (Michigan State University, 2018).
21. D. Jiles and D. Utrata, Journal of Nondestructive Evaluation 6(3), 129–134 (1987). DOI: 10.1007/BF00568008.
22. M. Devine et al., Journal of Materials Engineering and Performance 1(2), 249–253 (1992). DOI: 10.1007/BF02648624.
23. J. Błachnio, J. Dutkiewicz, and A. Salamon, Materials Science and Engineering: A 323(1–2), 83–90 (2002). DOI: 10.1016/S0921-5093(01)01368-5.
24. Z. Li et al., Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 4(4), 041004 (2021). DOI: 10.1115/1.4050842.
25. D. Jiles, NDT International 21(5), 311–319 (1988). DOI: 10.1016/0308-9126(88)90189-7.
26. L. B. Sipahi, D. C. Jiles, and D. Chandler, Journal of Applied Physics 73(10), 5623–5625 (1993). DOI: 10.1063/1.353617.
27. R. Tomkowski et al., Sensors 19(21), 4716 (2019). DOI: 10.3390/s19214716.
28. O. Stupakov et al., Journal of Magnetism and Magnetic Materials 321(18), 2956–2962 (2009). DOI: 10.1016/j.jmmm.2009.04.065.
29. R. Xie et al., Sensors 15(12), 32138–32151 (2015). DOI: 10.3390/s151229911.
30. C. Accettura et al., Resistivity characterization of molybdenum-coated graphite-based substrates for high-luminosity lhc collimators. Coatings. 10(4), 361 (2020). DOI: 10.3390/coatings10040361
31. S. C. Chan et al., IEEE Transactions on Magnetics 46(6), 1821–1824 (2010). DOI: 10.1109/TMAG.2010.2044980.
32. O. Bruchwald et al., 2016. “In-situ monitoring of the microstructure evolution using eddy current technology”. In 19th World Conference on Non-destructive Testing.
33. L. Fricke et al., HTM Journal of Heat Treatment and Materials 74(6), 345–356 (2019). DOI: 10.3139/105.110395.
34. D. S. Jardeleza, C. J. G. Aliac, and E. A. Maravillas “Predictive modeling of compressive strength composition values for structural studies using k-medoids clustering and quantile regression forests”. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), IEEE, pp. 1–5.
35. D. S. Weile and E. Michielssen, IEEE Transactions on Antennas and Propagation 45(3), 343–353 (1997). DOI: 10.1109/8.558650.
36. J. Vrana and R. Singh, Journal of Nondestructive Evaluation 40(3), 1–21 (2021). DOI: 10.1007/s10921-021-00793-7.
37. J. Vrana, Journal of Nondestructive Evaluation 40(2), 1–21 (2021). DOI: 10.1007/s10921-021-00777-7.
Usage | Shares |
---|---|
Total Views 77 Page Views |
Total Shares 0 Tweets |
77 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
77 |