Article Article
Computation and Storage Efficient Sparse MART Algorithm for 2-D, 3-D Reconstruction from Fan Beam, Cone-Beam Projection Data

Algebraic reconstruction algorithms are a better choice compared to transform-based algorithms whenever projection data is limited in nature. High computational cost and huge memory requirements are two major downsides of iterative reconstruction methods. Among all algebraic techniques, the Multiplicative Algebraic Reconstruction Technique (MART) is most popular because it maximizes the entropy (of the image) in the limiting case. In the present work, our ultimate goal is to reduce computational complexity and cope with the huge storage scenario of the MART algorithm. We propose a new sparse MART algorithm (Sp-MART) and test it with two-dimensional and three-dimensional (2D/3D) numerical data. A more accurate and efficient geometrical formula for calculating intersection length is also presented. Experimental projection data of human tooth and drip irrigation pipe is processed for further validation of the Sp-MART algorithm. Reconstructions of real specimens are also done using the FDK algorithm. The difference between two algorithms are investigated by calculating the structural similarity index (SSIM) and the L2 error of the results.

DOI: https://doi.org/10.1080/09349847.2021.1928350

References

A. C. De Vuono et al., IEEE Trans. Nucl. Sci. 27 (1), 814–820 (1980). DOI: 10.1109/TNS.1980.4330933.

N. N. Kishore et al., J. Res. Nondestruct. Eval. 22, 31–60 (2011). DOI: 10.1080/09349847.2010.534836.

S. Shakya et al., J. Res. Nondestruct. Eval. 26, 61–89 (2014). DOI: 10.1080/09349847.2014.944725.

F. Natterer, The Mathematics of Computerized Tomography (Jhon Wiley & Sons, Stuttgart, 1986).

S. Singh, K. Muralidhar, and P. Munshi, Def. Sci. J. 52, 303–316 (2002). DOI: 10.14429/dsj.52.2185.

M. Goswami et al., J. Res. Nondestruct. Eval. 27, 69–85 (2016). DOI: 10.1080/09349847.2015.1060659.

S. Sarkar, P. Wahi, and P. Munshi, J. Res. Nondestruct. Eval. 31, 164–186 (2020). DOI: 10.1080/09349847.2019.1673857.

M. Goswami, S. Kumar, and P. Munshi, Flow Meas. Instrum. 46, 80–86 (2015). DOI: 10.1016/j.flowmeasinst.2015.10.002.

K. Rathore, S. Bhattacharjee, and P. Munshi, Phys. Plasmas. 24, 063503 (2017). DOI: 10.1063/1.4984248.

S. K. Chaudhary et al., NDE 2017 Conference & Exhibition of the Indian Society for NDT (ISNT), Chennai 2017.

S. Kaczmarz, Bulletin Int. De l’Academie Polonaise De Sci. A 35, 355–357 (1937).

R. Gordon, R. Bender, and G. T. Herman, J. Theor. Biol. 29, 471–481 (1970). DOI: 10.1016/0022-5193(70)90109-8.

P. M. V. Subbarao, P. Munshi, and K. Muralidhar, Numer. Heat Tranfer B 31, 347–372 (1997). DOI: 10.1080/10407799708915114.

D. Mishra, K. Muralidhar, and P. Munshi, Numer. Heat Transfer B 35, 485–506 (1999). DOI: 10.1080/104077999275857.

K. Mueller, R. Yagel, and J. J. Wheller, IEEE Trans. Med. Imaging 18, 538–548 (1999). DOI: 10.1109/42.781018.

G. Wang, M. W. Vannier, and P. C. Cheng, Microsc. Microanal. 5, 58–65 (1999). DOI: 10.1017/S1431927699000057.

C. J. Hampton and P. F. Hamler, Proc. SPIE 4322, Medical Imaging 2001: Image Processing, 3 Jul. 2001.

N. Jain et al., J. Res. Nondestruct. Eval. 22, 147–168 (2011). DOI: 10.1080/09349847.2011.553347.

M. Bajpai et al., NDT&E Int. 3, 62–69 (2013). DOI: 10.1016/j.ndteint.2013.07.009.

D. C. Deiz, H. Mueller, and A. S. Frangakis, J. Struct. Biol. 157, 288–295 (2007). DOI: 10.1016/j.jsb.2006.08.010.

F. Xu and K. Mueller, Phys. Med. Biol. 52, 3405–3419 (2007). DOI: 10.1088/0031-9155/52/12/006.

M. Bajpai et al., J. Res. Nondestruct Eval. 24, 211–222 (2013). DOI: 10.1080/09349847.2013.795635.

S. Zhang et al., IEEE Access 6, 23007–23018 (2018). DOI: 10.1109/ACCESS.2018.2829861.

K. Mueller and R. Yagel, IEEE Trans. Med. Imaging. 19, 1227–1237 (2000). DOI: 10.1109/42.897815.

M. Bajpai, P. Gupta, and P. Munshi, Int. J. High Perform. Comput. Appl. 29, 64–72 (2015). DOI: 10.1177/1094342013518444.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987), pp. 102–103

PROCON X-RAY [Online], http://www.procon-x-ray.de/. (accessed Sep. 23, 2020).

Indian institute of technology Kanpur Procon X-ray CT mini [Online], https://www.iitk.ac.in/net/data/CT-MINI_Dec_18.pdf. (accessed Sep. 23 2020).

 

Metrics
Usage Shares
Total Views
4 Page Views
Total Shares
0 Tweets
4
0 PDF Downloads
0
0 Facebook Shares
Total Usage
4