
The magnetic flux leakage (MFL) inspection technology is widely used in pipeline industry to detect defects to ensure pipeline safety. During the high-speed inspection, a relative motion occurred between the pipeline inspection gauge (PIG) and the steel pipe wall will generate motion-induced eddy current (MIEC). There is a lack of research on analyzing the effect of MIEC on high-speed MFL inspection for thick-wall steel pipe. In this article, a three-dimensional (3D) finite-element method (FEM) simulations are conducted with an inspection speed range of 0 m/s to 8 m/s and a wall thickness range of 8 mm to 15 mm. Simulation results show that both high-speed inspection and thick-wall thickness will decrease the magnetization of steel pipe. It is observed that, at the speed of 8 m/s and the thickness of 15 mm, the magnetic field strength is lower than 2 kA/m and the steel pipe exits from the magnetic saturation zone, which causes the severe distortion of three-axis MFL signals, and the signal-to-noise ratio (SNR) is lower than 6 dB. A high-speed PIG is developed here for experiments to measure the three-axis MFL signals. The characteristics of simulated and measured MFL signals are found to be quite consistent.
K. C. Hari, M. Nabi, and S. V. Kulkarni, IET Sci., Meas. Technol. 1 (4), 196–200 (2007). DOI: 10.1049/iet-smt:20060069.
J. Wu et al., IEEE Trans. Magn. 51 (1), 1–7 (2015). DOI: 10.1109/TMAG.2014.2324993.
L. Xuan et al., Res. Nondestruct. Eval. 15 (3), 99–110 (2004). DOI: 10.1080/ 09349840490480756.
S. M. Dutta, F. H. Ghorbel, and R. K. Stanley, IEEE Trans. Magn. 45 (4), 1959–1965 (2009). DOI: 10.1109/TMAG.2008.2011895.
D. A. G. Trevino et al., IEEE Trans. Magn. 52 (12), 1–7 (2016). DOI: 10.1109/TMAG.2015.2475429.
J. Feng et al., IEEE Trans. Magn. 53 (7), 1–13 (2017). DOI: 10.1109/TMAG.2018.2792846.
G. Piao et al., NDT&E Int. 103,26–38 (2019). DOI: 10.1016/j.ndteint.2019.01.004.
Y. Sun et al., Res. Nondestruct. Eval. 27 (1), 1–25 (2016). DOI: 10.1080/ 09349847.2015.1039100.
A. A. Carvalho et al., Res. Nondestruct. Eval. 21 (2), 91–111 (2010). DOI: 10.1080/ 09349840903381655.
N. Money et al., Pipeline Gas J. 239 (8), 30–38 (2012).
G. S. Park and S. H. Park, IEEE Trans. Magn. 40 (2), 663–666 (2004). DOI: 10.1109/TMAG.2004.824717.
J. Wu et al., Int. J. Appl. Electromagn. Mech. 45, 193–199 (2014). DOI: 10.3233/JAE-141830.
Z. Liu et al., IEEE Trans. Instrum. Meas. 56 (6), 2435–2451 (2007). DOI: 10.1109/TIM.2007.908139.
C. Matthew, M. Fleming, and S. Dixon, NDT&E Int. 86,20–27 (2017). DOI: 10.1016/j. ndteint.2016.11.010.
S. Yang et al., IEEE Trans. Magn. 35 (3), 1754–1756 (1999). DOI: 10.1109/20.767369.
Y. Li, G. Y. Tian, and S. Ward, NDT&E Int. 39 (5), 367–373 (2006). DOI: 10.1016/j. ndteint.2005.10.006.
M. Augustyniak and Z. Usarek, J. Nondestruct. Eval. 35 (3), 39 (2016). DOI: 10.1007/s10921-016-0356-6.
Y. Shi et al., Sensors 15 (12), 31036–31055 (2015). DOI: 10.3390/s151229845.
H. Q. Pham et al., IEEE Trans. Magn. 54 (6), 6201206 (2018).
A. Montgomery, P. Wild, and L. Clapham, Res. Nondestruct. Eval. 17 (2), 85–99 (2006). DOI: 10.1080/09349840600689509.
S. Mandayam et al., IEEE Trans. Magn. 32 (3), 1577–1580 (1996). DOI: 10.1109/ 20.497553.
S. Mandayam et al., Res. Nondestruct. Eval. 8 (4), 233–247 (1996). DOI: 10.1080/ 09349849609409601.
J. Etcheverry, D. Ziella, and G. Sánchez, Presented Proc. AIP Conf. 1511 (1), 1498–1503 (2013).
G. Katragadda et al., NDT Int. 30 (1), 499–505 (1995).
Y. Li, G. Y. Tian, and S. Ward, Insight 48 (2), 103–108 (2006). DOI: 10.1784/insi.2006.48.2.103.
Z. Gan and X. Chai, Presented Int. Conf. Electron. Optoelectron. (ICEOE) 3, 316–319 (2011).
L. Zhang, F. Belblidia, and I. Cameron, J. Nondestruct. Eval. 34 (2), 1–8 (2015). DOI: 10.1007/s10921-015-0280-1.
Z. Du et al., IEEE Trans. Magn. 44 (6), 1642–1645 (2008). DOI: 10.1109/TMAG.2007.915955.
B. Feng, Y. Kang, and Y. Sun, Res. Nondestruct. Eval. 27 (2), 100–111 (2016). DOI: 10.1080/09349847.2015.1061721.
30. L. Lei et al., Insight 51 (9), 508–511 (2009). DOI: 10.1784/insi.2009.51.9.508.
31. S. Lu et al., IEEE Trans. Magn. 1 (1), 99 (2017).
Usage | Shares |
---|---|
Total Views 73 Page Views |
Total Shares 0 Tweets |
73 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
73 |