Article Article
Nonlinear Ultrasonic Second Harmonic Assessment of Concrete Defects Based on Embedded Piezoelectric Sensors

In this work, the second harmonic generation (SHG) technique based on embedded piezoelectric (PZT) sensors is developed for the defect assessment of concrete samples. Three different imperfection forms of concrete including internal capillary void during the curing process, cracking damage due to compression, and bending loads are examined and analyzed. Clear second harmonics are observed by Fourier transform of time domain signal, and the square of fundamental signal amplitude shows a linear relation with the second harmonic amplitude as theoretically expected. The nonlinear parameter presents a good distinction for samples in different states of three cases, indicating the well-round feasibility of SHG technique based on embedded sensors. In addition, the nonlinear parameter presents an excellent correlation with the variation of internal capillary void and cracks in concrete. The high sensitivity of the developed SHG technique is further validated through a comparison between the nonlinear parameter and two traditional linear parameters, namely the phase velocity of Rayleigh wave and the resonance frequency of vibrations. Experimental results in this study demonstrate that the embedded sensors are promising for the nonlinear ultrasonic nondestructive evaluation of concrete structures, particularly as a low-cost alternative of commercial ultrasonic transducers.

DOI: https://doi.org/10.1080/09349847.2020.1797255

References

P. C. Chang, A. Flatau, and S. C. Liu, Struct. Health Monit. 11 (3), 257 (2003). DOI: 10.1177/1475921703036169.

D. G. Aggelis, Mater. Struct. 46 (4), 519 (2013). DOI: 10.1617/s11527-013-0020-x.

J. Van Hauwaert, J.-F. Thimus, and F. Delanny, Ultrasonics. 36 (1–5), 209 (1998). DOI: 10.1016/S0041-624X(97)00129-7.

ASTM C597-16, Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, 2016.

ASTM C1332-18, Standard Practice for Measurement of Ultrasonic Attenuation Coefficients of Advanced Ceramics by Pulse-echo Contact Technique, ASTM International, West Conshohocken, PA, 2018.

K. E.-A. Van Den Abeele, P. A. Johnson, and A. Sutin, Res. Nondestr. Eval. 12 (1), 17 (2000). DOI: 10.1080/09349840009409646.

K. E.-A. Van Den Abeele, P. A. Johnson, and A. Sutin, Res. Nondestr. Eval. 12 (1), 31 (2000). DOI: 10.1080/09349840009409647.

I. Solodov, Ultrasonics. 36 (1–5), 383 (1998). DOI: 10.1016/S0041-624X(97)00041-3.

A. A. Shah, Y. Ribakov, and C. Zhang, Mat. Design. 50, 905 (2013). DOI: 10.1016/j.matdes.2013.03.079.

K. Warnemuende and H.-C. Wu, Cem. Concr. Res. 34 (4), 563 (2004). DOI: 10.1016/j.cemconres.2003.09.008.

M. E. McGovern and H. Reis, Res. Nondestr. Eval. 28 (4), 226 (2017). DOI: 10.1080/09349847.2016.1180468.

C. Payan, V. Garnier, and J. Moysan, Cem. Concr. Res. 40 (3), 473–476 (2010). DOI: 10.1016/j.cemconres.2009.10.021.

K. E.-A. Van Den Abeele et al., NDT&E Int. 34 (4), 239 (2001). DOI: 10.1016/S0963-8695(00)00064-5.

J. Chen et al., Cem. Concr. Res. 40 (6), 914 (2010). DOI: 10.1016/j.cemconres.2010.01.003.

J. Chen et al., J. Acoust. Soc. Am. 130 (5), 2728 (2011). DOI: 10.1121/1.3647303.

J. Jin et al., J. Nondestr. Eval. 36 (3), 51 (2017). DOI: 10.1007/s10921-017-0428-2.

P. Shokouhi et al., Mater. Eval. 75 (1), 84–93 (2017).

B. Hilloulin et al., NDT&E Int. 68, 98–104 (2014). DOI: 10.1016/j.ndteint.2014.08.010.

J. B. Legland et al., J. Acoust. Soc. Am. 142 (4), 2233–2241 (2017). DOI: 10.1121/1.5007832.

D. P. Schurr et al., NDT&E Int. 44 (8), 728 (2011). DOI: 10.1016/j.ndteint.2011.07.009.

J. Y. Kim et al., J. Acoust. Soc. Am. 120 (3), 1266 (2006). DOI: 10.1121/1.2221557.

Y. Liu et al., J. Sound Vib. 332 (19), 4517–4528 (2013). DOI: 10.1016/j.jsv.2013.03.021.

C. J. Lissenden et al., J. Nondestruct. Eval. 133 (2), 178 (2014). DOI: 10.1007/s10921-014-0226-z.

G. S. Shui et al., NDT&E Int. 70, 9 (2015). DOI: 10.1016/j.ndteint.2014.11.002.

J. Chen et al., NDT&E Int. 67, 10 (2014). DOI: 10.1016/j.ndteint.2014.06.005.

A. Deraemaeker and C. Dumoulin, Constr. Build. Mater. 194, 42–50 (2019). DOI: 10.1016/j.conbuildmat.2018.11.013.

G. B. Song, H. C. Gu, and Y. L. Mo, Smart Mater. Struct. 17 (3), 033001 (2008). DOI: 10.1088/0964-1726/17/3/033001.

G. B. Song et al., Smart Mater. Struct. 16 (4), 959–968 (2007). DOI: 10.1088/0964-1726/16/4/003.

E. Niederleithinger et al., Sensors. 18 (6), 1971 (2018). DOI: 10.3390/s18061971.

E. Niederleithinger et al., Sensors. 15 (5), 9756–9772 (2015). DOI: 10.3390/s150509756.

E. Tsangouri et al., Struct. Health Monit. 14 (5), 462–474 (2015). DOI: 10.1177/1475921715596219.

M. E. Voutetaki et al., Eng. Struct. 114, 226–240 (2016). DOI: 10.1016/j.engstruct.2016.02.014.

C. G. Karayannis et al., Constr. Build. Mater. 105, 227–244 (2016). DOI: 10.1016/j.conbuildmat.2015.12.019.

S.-H. Kee and J. Zhu, Smart Mater. Struct. 22, 115016 (2013). DOI: 10.1088/0964-1726/22/11/115016.

L. Qin, Y. Lu, and Z. Li, ASCE J Mater. Civil Eng. 22 (12), 1323 (2010). DOI: 10.1061/(ASCE)MT.1943-5533.0000133.

H. Gu et al., Smart Mater. Struct. 15 (6), 1837 (2006). DOI: 10.1088/0964-1726/15/6/038.

C. Dumoulin and A. Deraemaeker, Ultrasonics. 79, 18–33 (2017). DOI: 10.1016/j.ultras.2017.04.002.

A. Guyer and P. A. Johnson, Phys. Today. 52 (4), 30 (2000). DOI: 10.1063/1.882648.

P. B. Nagy, Ultrasonics. 36 (1–5), 375 (1998). DOI: 10.1016/S0041-624X(97)00040-1.

European Standard EN 197-19uropean Standard EN 197-1, Composition, Specifications and Conformity Criteria for Common Cements, European Committee for Standardization, Brussels, 2011.

S. Popovics, J. L. Rose, and J. S. Popovics, Cem. Concr. Res. 20 (2), 259 (1990). DOI: 10.1016/0008-8846(90)90079-D.

 

Metrics
Usage Shares
Total Views
3 Page Views
Total Shares
0 Tweets
3
0 PDF Downloads
0
0 Facebook Shares
Total Usage
3