Article Article
Development of Multi-Coils Circular Eddy Current Sensor for Characterization of Fibers Orientation and Defect Detection in Multidirectional CFRP Material

This article presents a study of a Multi-coils circular eddy current non-destructive testing sensor for determining the fibers orientation as well as the detection of defect in multidirectional carbon fibers reinforced polymer (CFRP). The developed sensor contains 16 rectangular coils connected in series and supplied by a single-phase sinusoidal source. This sensor allows the annulations of the mechanical rotation of the conventional sensors and it permits to reduce the inspection procedure duration. The electromagnetic phenomena are calculated by using 3D finite element method (FEM) based on the electromagnetic AV-A formulation. Finally, the Multi-coils circular sensor responses are analyzed through polar diagrams of the impedance variation, where the defect is taken into consideration. A great concordance between the obtained results and those of literatures has been noticed. The provided results show that the proposed sensor allows an efficient characterization of multidirectional CFRP and detection of defects in different layers.



J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, Sensors. 11, 2525–2565 (2011). DOI: 10.3390/s110302525.

W. Yin et al. Noncontact Characterization of Carbon-Fiber-Reinforced Plastics Using Multifrequency Eddy Current Sensors, IEEE Transactions on Instrumentation and Measurement (NO. 3, Digital Object Identifier, Mar. 2009), Vol. 58. DOI: 10.1109/TIM.2008.2005072.

A. Bouloudenine, M. Feliachi, and M. El Hadi Latreche, NDT &E Int. 92, 30–37 (2017). DOI: 10.1016/j.ndteint.2017.07.011.

J. Cheng et al., NDT&E Int. 68, 1–12 (2014). DOI: 10.1016/j.ndteint.2014.07.001.

J. Cheng et al., Int. J. Appl. Electromagn. Mech. 51, 261–284 (2016). DOI: 10.3233/JAE-150168.

M. Khebbab, M. Feliachi, and M. El Hadi Latreche, Eur. Phys. J. Appl. Phys. 8110401 (2018). DOI: 10.1051/epjap/2017170034.

K. Mizukami et al., Adv. Compos. Mater. Taylor & Francis. DOI: 10.1080/09243046.2015.1052132.

H. Heuer et al., Compos. Part B-Eng. 77, 494–501 (2015). DOI: 10.1016/j.compositesb.2015.03.022.

F. Awaja et al., Prog. Mater. Sci. 83, 536–573 (2016). DOI: 10.1016/j.pmatsci.2016.07.007.

G. Bardl et al., Compos. Part B-Eng. 96, 312–324 (2016). DOI: 10.1016/j.compositesb.2016.04.040.

K. Mizukami et al., Compos. Part A. 82, 108–118 (2016). DOI: 10.1016/j.compositesa.2015.11.040.

K. Mizukami et al., Compos. Part A-Appl. Sci. Manuf. 82 (315), 108–118 (2016). DOI: 10.1016/j.compositesa.2015.11.040.

Y. Z. He et al., Compos. Part B-Eng. 59, 196–324 203 (2014). DOI: 10.1016/j.compositesb.2013.12.005.

A. C. Lahrech et al., Eur. Phys. J. Appl. Phys. 83, 20901 (2018). DOI: 10.1051/epjap/2018170411.

G. Mook, R. Lange, and O. Koeser, Compos. Sci. Technol. 61, 865–873 (2001).

H. Menana and M. Féliachi, Eur. Phys. J. Appl. Phys. (Nov. 2010). DOI: 10.1051/epjap/2010079.

D. Hachi et al., Adv. Electromagn. 8 (1), 8–15 (2019). DOI: 10.7716/aem.v8i1.953.

D. Berger and G. Lanza, Sensors. 18 (4) (2018). DOI: 10.3390/s18010004.

D. D. L. Chung, SmartMater. Struct. 10, 624–636 (2001). DOI: 10.1088/0964-1726/10/4/305.

J. B. Park et al., Smart Mater. Struct. 16, 57–66 (2007). DOI: 10.1088/0964-1726/16/1/006.

S. B. Pratap and W. F. Weldon, IEEE Trans. Magn. 32, 437–444 (1996). DOI: 10.1109/20.486530.

R. Grimberg et al., Eddy current examination of carbon fibres in carbon-epoxy composites and kevlar, The 8th International Conference of the Slovenian Society for Non-Destructive Testing, Portoro┼ż, Slovenia (2005), pp. 223–228.

Z. Badics et al., IEEE Trans. Magn. 33 (2) (Mar. 1997). DOI: 10.1109/20.558521.

J. R. Bowler, L. D. Sabbagh, and H. A. Sabbagh, IEEE Trans. Magne. 25, 2650–2664 (1989). DOI: 10.1109/20.24505.

Usage Shares
Total Views
18 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage