Article Article
Detection and Quantification of Non-Linear Structural Behavior Using Frequency Domain Methods

Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions, and nonlinear material properties. In this paper, we investigate the effectiveness of five selected frequency domain techniques for the detection of nonlinear behavior of the structure. Numerical simulation studies have been carried out by choosing a typical benchmark problem i.e., spring-mass system. The strength and weaknesses of each of the technique are evaluated with respect to their sensitivity to measurement noise. Efforts are also made in this paper to estimate the degree of nonlinearity present in the system using all the five techniques. Numerical investigations are later complemented with experimental studies to demonstrate their practical applicability. The investigations carried out in this paper clearly highlight the effectiveness of the bispectrum technique in robustly identifying the presence and also the degree of nonlinearity in the system.

DOI: doi.org/10.1080/09349847.2019.1623958

References

G. Kerschen et al., Mech. Syst. Signal Process. 20(3), 505–592 (2006). DOI: 10.1016/j.ymssp.2005.04.008.

K. Worden and G. R. Tomlinson, Nonlinearity in Structural Dynamics: Detection, Identification and Modeling (Institute of Physics Publishing, UK, 2001).

A. Chatterjee, Lect. Notes 1, 1–20 (2009).

C. R. Farrar and K. Worden, Los Alamos National Laboratory Report, 2007. DOI: 10.1094/PDIS-91-4-0467B.

J. Prawin and A. R. M. Rao, Int. J. Struct.L Stab. Dyn. 18(02), 1871003 (2018). DOI: 10.1142/S0219455418710037.

J. Prawin and A. R. M Rao, Mech. Syst. Signal Process. 84, 58–77 (2017). DOI: 10.1016/j.ymssp.2016.06.040.

A. Zagrai et al., Res. Nondestr. Eval. 19(2), 104–128 (2008). DOI: 10.1080/09349840801931817.

S. Bellizzi and R. Sampaio, Mech. Syst. Signal Process. 64–65, 245–256 (2015). DOI: 10.1016/j.ymssp.2015.04.015.

R. J. Kuether et al., J. Sound Vib.. 351, 299–310 (2015). DOI: 10.1016/j.jsv.2015.04.035.

H. Elizalde, PhD Thesis, Imperial College, 2004.

P. Frank Pai, B.-A. Nguyen, and M. J. Sundaresan, Int. J. Nonlinear Dyn. 54, 85–98 (2013).

K. Wyckaert, PhD Thesis Department of Mechanical Engineering, Division PMA, Katholieke Universiteit Leuven, 1992.

J. Prawin, A. R. M. Rao, and K. Lakshmi, Int. J. Nonlinear Dyn. 84(2), 797–815 (2015). DOI: 10.1007/s11071-015-2528-9.

M. N. Keshtan and M. N. Khajavi, Res. Nondestr. Eval. 27(3), 155–174 (2016). DOI: 10.1080/09349847.2015.1103921.

Francesco Lanza di Scalea and John mcnamara, Res. Nondestr. Eval. 15 (2), 87–98 (2004). DOI: 10.1080/09349840490443658.

J. Prawin and A. R. M. Rao, J. Struct. Eng. 44(3), 256–264 (2017).

W. J. Kim and Y. S. Park, Mech. Syst. Signal Process. 3, 239–255 (1993). DOI: 10.1006/mssp.1993.1011.

J. Prawin and A. R. M. Rao, Smart Struct. Syst. 22(6), 711–725 (2018).

A. Hot and G. Kerschen, Mech. Syst. Signal Process. 26, 104–116 (2012). DOI: 10.1016/j.ymssp.2011.06.006.

J. Prawin, A. R. M. Rao, and K. Lakshmi, Comput. Struct. 154(1), 116–134 (2015). DOI: 10.1016/j.compstruc.2015.03.013.

G. Yang et al., Res. Nondestr. Eval. 20(4), 230–245 (2009). DOI: 10.1080/09349840903078996.

B. Sasi et al., Res. Nondestr. Eval. 24(1), 51–61 (2013). DOI: 10.1080/09349847.2012.699608.

S. Mandayam et al., Res. Nondestr. Eval. 8(4), 233–247 (1996). DOI: 10.1080/09349849609409601.

Y. Zhou, A. Mayyas, and M. A. Omar, Res. Nondestr. Eval. 22(2), 76–91 (2011). DOI: 10.1080/09349847.2011.553348.

D. Hickey and K. Worden, In Proc. International Conference on Noise and Vibration Engineering, Leuven, 3145–3158. 1998.

S. L. Hahn, Hilbert Transforms in Signal Processing (Artech House, Boston, 1996).

C. H. Loh and J. Y. Duh, In Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, 338. 1996.

T. Chanpheng et al., Struct. Health Monit. 11(4), 482–488 (2012). DOI: 10.1177/1475921712437182.

S. Chesne and A. Deraemaeker, Mech. Syst. Signal Process. 38, 569–584 (2013). DOI: 10.1016/j.ymssp.2013.01.020.

Z. Q. Lang et al., Int. J. Nonlinear Mech. 46, 841–853 (2011). DOI: 10.1016/j.ijnonlinmec.2011.03.009.

D. Hickey and K. Worden, Mech. Syst. Signal Process. 23, 1037–1061 (2009). DOI: 10.1016/j.ymssp.2008.10.008.

C. L. Nikias and A. P. Petropula, Higher Order Spectra Analysis: A Nonlinear Signal Processing Framework (Englewood Cliffs, N.J.:,Prentice Hall, 1993).

A. H. Mohammed, PhD Thesis, University of South Carolina, 2013.

A. H. Mohammed, A. E. Bayoumi, and Y. J. Shin, IEEE Trans. Instrum. Meas. 63(3), 719–728 (2014). DOI: 10.1109/TIM.2013.2280488.

https://www.lanl.gov/projects/national-security-education-center/engineering/software/assets/shm-software-tools/documentation/ExampleUsages.pdf

A. Bovsunovsky and C. Surace, Mech. Syst. Signal Process. 62, 129–148 (2015). DOI: 10.1016/j.ymssp.2015.01.021.

U. Galvanetto and G. Violaris, Mech. Syst. Signal Process 21(3), 1346–1361 (2007). DOI: 10.1016/j.ymssp.2005.12.007.

J. Prawin and A. R. M. Rao, Int. J. Struct. Stab. Dyn. 19(2), 1950017 (2019). DOI: 10.1142/S0219455419500172.

J. Prawin and A. R. M. Rao, Struct. Health Monit. DOI:10.1177/1475921718788801 (2018).

J. Prawin, K. Lakshmi, and A. R. M Rao, Intell. Mater. Syst. Struct. 99, 516–533 (2018).

Metrics
Usage Shares
Total Views
17 Page Views
Total Shares
0 Tweets
17
0 PDF Downloads
0
0 Facebook Shares
Total Usage
17