Article Article
Analytical Model of the Electro-Mechanical Impedance Response of Frame Structures with L-Shaped Beams

The electro-mechanical impedance (EMI) method has been accepted as an effective technique for detecting damages in the Structural health monitoring (SHM). EMI at any point of the structure depends on material properties, geometry and boundary conditions that all appears in dynamic stiffness of the structure. In spite of the expensive experimental methods for measuring the mechanical impedance, or the cheaper one electromechanical impedance, of structures, various analytical methods could be substitutions for them. In this paper, an analytical method is developed to obtain the EMI response of L-shaped beams through calculating the dynamic stiffness of the structure. To verify the model, an experimental setup with an embedded piezoelectric wafer active sensor (PWAS) is carried out. The results have shown that EMI and its real part, extracted by the current analytical method, are with good agreement of the experimental results. Also, the dynamic stiffness of the structure directly depends on the mode shapes of the structure and its natural frequencies in terms of the excitation frequency. The peaks of the real part of the EMI results related to the coincidence between agitation frequency value and natural frequencies of the structure.



C. Liang, F. P. Sun, and C. A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12–20 (1994 January). DOI: 10.1177/1045389X9400500102.

A. N. Zagrai and V. Giurgiutiu, J. Intell. Mater. Syst. Struct. 12, 709–718 (2001). DOI: 10.1177/104538901320560355.

G. Park and D. J. Inman, J. Philos. Trans. Royal Soc. 365, 373–392 (2007). DOI: 10.1098/rsta.2006.1934.

J. Kim et al., IEEE Conference on Technologies for Homeland Security, Woburn, 2007.

A. Cuc et al., Aiaa J. 45 (12), 2838–2850 (2007). DOI: 10.2514/1.26141.

B. L. Grisso and D. Inman, Smart Struct. Syst. 4 (3), 305–318 (2008). DOI: 10.12989/sss.2008.4.3.305.

S. R. Hamzeloo, M. Shamshirsaz, and S. M. Rezaei, C.R. Mec. 340, 668–677 (2012). DOI: 10.1016/j.crme.2012.07.001.

G. Park et al., Shock Vib. Dig. 35 (6), 451–463 (2003). DOI: 10.1177/05831024030356001.

Y. Y. Lim and C. K. Soh, Am. Soc. Nondestr. Test. 25, 82–98 (2014).

S. Park and S. K. Park, J. Res. Nondestruct. Eval. 21 (3), 184–192 (2010). DOI: 10.1080/09349847.2010.493991.

F. Guo, Z. Yu, and Z. Shan, J. Res. Nondestruct. Eval. 27 (1), 26–33 (2016). DOI: 10.1080/09349847.2015.1044587.

J. W. Kim, C. Lee, and S. Park, J. Res. Nondestruct. Eval. 24 (3), 183–196 (2002).

I. Giorgio, A. Culla, and D. Del Vescovo, Arch. Appl. Mech. 79 (9), 859 (2009). DOI: 10.1007/s00419-008-0258-x.

I. Giorgio et al., Int. J. Appl. Electromagnet. Mech. 47 (4), 1051–1084 (2015). DOI: 10.3233/JAE-140148.

F. Dell’Isola and S. Vidoli, Arch. Appl. Mech. 68 (9), 626–636 (1998). DOI: 10.1007/s004190050192.

G. Rosi, J. Pouget, and F. Dell’Isola, Eur. J. Mech-A/Solids 29 (5), 859–870 (2010). DOI: 10.1016/j.euromechsol.2010.02.014.

V. Giurgiutiu and C. A. Rogers, Adaptive Structures And Material Systems Symposium, Nashville, 1999.

V. Giurgiutiu and A.M. Zagrai, J. Vib. Acoust. 124, 116–125 (2002).DOI: 10.1115/1.1421056.

V. Giurgiutiu and A. M. Zagrai, J. Intell. Mater. Syst. Struct. 12, 709–718 (2002).

S. Bhalla and C. K. Soh, J. Intell. Mater. Syst. Struct. 15, 955–972 (2004). DOI: 10.1177/1045389X04046309.

D. M. Peairs, D. J. Inman, and G. Park, J. Struct. Health Monit. 6 (1), 81–94 (2007). DOI: 10.1177/1475921707072621.

S. Bhalla and C. K. Soh, J. Aerosp. Eng. 17 (4), 154–165 (2004). DOI: 10.1061/(ASCE) 0893-1321(2004)17:4(154).

W. Yan et al., J. Mech. Adv. Mater. Struct. 15 (1), 1–11 (2008). DOI: 10.1080/15376490701410513.

N. Sepehry, M. Shamshirsaz, and A. Bastani, IEEE/ASME International Conference on Advanced Intelligent Mechatronics Montréal, Canada, 2010.

V. Giurgiutiu, J. Incas Bull. 2, 31–44 (2010). DOI: 10.13111/2066-8201.2010.2.3.4.

W. D. Zhu and K. He, J. Vib. Acoust. 135 (5), 2–51 (2013). DOI: 10.1115/1.4024393.

S. Bhalla and C. K. Soh, J. Earthquake Eng. Struct. Dyn. 32, 1897–1916 (2003). DOI: 10.1002/(ISSN)1096-9845.

D. L. Mascarenas et al., Smart Mater. Struct. 16 (6), 2137–2145 (2007). DOI: 10.1088/0964-1726/16/6/016.

A. C. Rutherford, G. Park, and C. R. Farrar, Mech. Syst. Signal Process 21, 322–333 (2007). DOI: 10.1016/j.ymssp.2005.10.002.

F. Georgiades, J. Warminski, and M. P. Cartmell, J. Mech. Syst. Signal Process. 38, 312–332 (2013). DOI: 10.1016/j.ymssp.2012.12.006.

PIEZO SYSTEMS, INC. CATALOG #8, 2011. [Online].

F. P. Sun et al., J. Intell. Mater. Syst. Struct. 6 (1), 134–139 (1995). DOI: 10.1177/1045389X9500600117.

Usage Shares
Total Views
28 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage