Article Article
A Reliability-Based Condition Assessment of Structural Concrete Using Synthetic Aperture Radar Imaging Techniques

This paper proposes a probabilistic framework for assessing the condition of structural concrete with respect to moisture contained within cured concrete using a 10 GHz synthetic aperture radar (SAR) imaging system. Functional relationships between integrated SAR amplitude (SAR image index) and moisture content have been developed in previous studies utilizing experimental data collected in a controlled laboratory environment. These studies have shown that the integrated SAR amplitude (SAR image index) increases exponentially with an increase in moisture content at a given water-to-cement (w/c) ratio. In this study, a reliability model is developed using the integrated SAR amplitude and moisture content relationships from an experimental study which included concrete specimens with five different w/c ratios in addition to variations of critical functional parameters and Monte Carlo simulation techniques. The reliability model of moisture content detected with synthetic aperture radar in this study follows a normal distribution. An illustrative example is presented to demonstrate the reliability-based methods of measuring in-place moisture content using an integrated SAR amplitude. The findings from this study emphasize the need to consider the variation of parameters affecting nondestructive SAR imaging results for the purposes of diagnosing moisture content of aged structural concrete.



C. C. Stanley and R. V. Balendran, Proceedings of the International Conference on Structural Faults & Repair-95 (Engineering Technics Press, London, 1995), Vol. 3, pp. 39–44.

W. S. Najjar, H. C. Aderhold, and K. C. Hover, Cem. Concr. Aggregates CCAGDP 8 (2), 103–110 (1986). DOI: 10.1520/CCA10063J.

H. C. Aderhold, K. C. Hover, and W. S. Najjar, Proceedings of the Second World Conference on Neutron Radiography (France, 1986).

W. S. Najjar, Ph.D. thesis (on microfilm), Cornell University, Ithaca, NY, 1987.

T. Yu, Damage Detection of GFRP-Concrete Systems Using Electromagnetic Waves:

Theory and Experiment (LAP LAMBERT Academic Publishing, 2010).

T. Yu, J. Eng. Mech. 137 (8), 547–560 (2011). DOI: 10.1061/(ASCE)EM.1943-7889.0000257.

S. Laurens et al., Mater. Struct. 35 (4), 198–203 (2002). DOI: 10.1007/BF02533080.

J. B. Cornell and A. T. Coote, J. Appl. Chem. Biotechnol. 22 (4), 455–463 (1972). DOI: 10.1002/()1935-0554.

J. Baker-Jarvis et al., Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-index Materials (2005).

T. Yu, Res. Nondestr. Eval. (2016).

E. M. Johansson and J. E. Mast, in Advanced Microwave and Millimeter-Wave Detectors (International Society for Optics and Photonics, September 1994), Vol. 2275, pp. 205–214.

A. Franchois, P. Lewyllie, and L. Taerwe, Int. J. Appl. Electromagnet. Mech. 19 (1–4), 333–338 (2004). DOI: 10.3233/JAE-2004-586.

R. M. Narayanan, J. Franklin Inst. 345 (6), 659–678 (2008). DOI: 10.1016/j.jfranklin.2008.03.004.

M. T. Ghasr et al., ACI Mater. J. 112 (1), (2015). DOI: 10.14359/51686981.

K. Takahashi, S. Okamura, and M. Sato, Electron. Commun. Japan. 98 (11), 41–49 (2015).

H. C. Rhim and O. Büyük.ztürk, J. Struct. Eng. 126 (12), 1451–1457 (2000). DOI: 10.1061/(ASCE)0733-9445(2000)126:12(1451).

T. Y. Yu and O. Büyük.ztürk, NDT E Int. 41 (1), 10–24 (2008). DOI: 10.1016/j.ndteint.2007.07.002.

S. Kharkovsky et al.. AIP Conference Proceedings (AIP, May 2012), Vol. 1430, No. 1, pp. 1516–1523.

Q. Tang, J. Hu, and T. Yu, NDT E Int. 104, 98–107 (2019). DOI: 10.1016/j.ndteint.2019.04.006.

C. M. Ingemi, J. O. Twumasi, and T. Yu, in Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII (International Society for Optics and Photonics, Mar. 2018), Vol. 10599, pp. 1059917.

J. H. Bungey, Constr. Build. Mater. 18 (1), 1–8 (2004). DOI: 10.1016/S0950-0618(03)00093-X.

T. Yu et al., J. Struct. Eng. 143 (10), 04017143 (2017). DOI: 10.1061/(ASCE)ST.1943-541X.0001730.

A. Alzeyadi and T. Yu, Constr. Build. Mater. 184, 351–360 (2018). DOI: 10.1016/j.conbuildmat.2018.06.209.

A. Alzeyadi and T. Yu, J. Aerosp. Eng. 32 (1), 04018112 (2018). DOI: 10.1061/(ASCE) AS.1943-5525.0000945.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).

J. McCorkle and M. Rofheart, Proc. SPIE 2747, 25–36 (1996).

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing Cambridge, MA, 2000).

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic waves—Theories and Applications (Wiley, New York, 2000).

M. D. Desai and W. K. Jenkins, IEEE Trans. Image Process. 1 (4), 505–517 (1992). DOI: 10.1109/83.199920.

W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture radar —Signal Processing Algorithms (Artech House, Boston, 1995).

D. Russell et al., Proc. Inst. Civil Eng.- Struct. Build. 146 (3), 319–326 (2001). DOI: 10.1680/stbu.2001.146.3.319.

J. P. T. Higgins and S. Green eds., Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0 Section (The Cochrane Collaboration). (updated Mar. 2011).

H. M. A. Al-Mattarneh, D. K. Ghodgaonkar, and W. M. B. W. A. Majid, Subsurface Sens. Technol. Appl. 2 (4), 377–390 (2001). DOI: 10.1023/A:1013217017554.


Usage Shares
Total Views
37 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage