Article Article
Signal processing techniques for filtering acoustic emission data in prestressed concrete

The current state of infrastructure in the United States and worldwide has raised the need for reliable structural health monitoring techniques. Piezoelectric sensing, such as acoustic emission, has recently gained attention due to its high sensitivity and associated capability for early detection of damage. The high sensitivity of this method, however, results in the collection of data not directly related to damage growth. Current filtering procedures focus primarily on parametric analysis of the collected signals. This study focuses on developing more robust filtering techniques for acoustic emission data collected from a prestressed concrete specimen. Simulated data was generated to enable proper identification of the source of the collected signals. Filtering criteria were developed through characterization of the energy content using a wavelet transform. The developed filters were capable of separating the induced target signals from other signals with reasonable accuracy, and the results were verified through source location. The developed filters were validated using acoustic emission data collected during a load test.

DOI: 10.1080/09349847.2018.1426800

References

[1] H. Tabatabai, A. B. Mehrabi, and W. P. Yen, SPIE 3400, Structural Materials Technology III: An NDT Conference, San Antonio, TX, 31 Mar. 1998, pp.194–204.

[2] P. C. Chang and S. C. Liu, ASCE J. Mater. Civ Eng. 15 (3), 298–304 (Jun. 2003). DOI: 10.1061/(ASCE)0899-1561(2003)15:3(298).

[3] A. Ghorbanpoor, et al., Final Rep. No. FHWA-RD-00-026, 2000. Federal Highway Administration, Washington, DC.

[4] M. Sansalone and W. Street, International Symposium ND-Testing in Civil Engineering, Berlin, 1995, Vol. 1, pp. 494–502.

[5] K. Komlos et al., Cement Concrete Comp. 18 (5), 357–364 (1996). DOI: 10.1016/0958-9465(96)00026-1.

[6] P. Ziehl, SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, San Diego, CA, 9-13 Mar. 2008, p. 9.

[7] K. Ono, Diagnostyka Diagnostics and Stuructural Health Monitoring, 2 (58), 3–18 (2011).

[8] ASTM E1316, Standard Terminology for Nondestructive Examinations (American Standard for Testing and Materials, 2014), West Conshohocken, PA, USA, pp. 1–38.

[9] L. Golaski, P. Gebski, and K. Ono, J. Acoust. Emiss. 20, 83–98 (2002).

[10] J. Mangual et al., ACI Mater. J. 110 (1), 89–98 (2013).

[11] M. ElBatanouny et al., Constr. Build. Mater. 58, 46–53 (2014). DOI: 10.1016/j.conbuildmat.2014.01.100.

[12] A. Nair and C. S. Cai, Eng. Struct. 32 (6), 1704–1714 (2010). DOI: 10.1016/j.engstruct.2010.02.020.

[13] M. Ohtsu et al., ACI Struct. J. 99 (4), 411–417 (2002).

[14] A. Larosche et al., Eng. Struct. 84, 184–194 (2015). DOI: 10.1016/j.engstruct.2014.10.026.

[15] S. Lovejoy, Struct. Health Monit. 7, 327–346 (2008). DOI: 10.1177/1475921708090567.

[16] S. Colombo, I. G. Main, and M. C. Forde, ASCE J. Mater. Civ Eng. 15 (3), 280–286 (2003). DOI: 10.1061/(ASCE)0899-1561(2003)15:3(280).

[17] M. ElBatanouny et al., Exp. Mech. 54 (1), 69–82 (2014). DOI: 10.1007/s11340-012-9692-3.

[18] D. G. Aggelis et al., ACI Mater. J. 106 (6), 509–514 (2009).

[19] L. Calabrese, G. Campanella, and E. Proverbio, Corros. Sci. 73, 161–171 (2013). DOI: 10.1016/j.corsci.2013.03.032.

[20] R. Gutkin et al., Mech. Syst. Signal Process 25 (4), 1393–1407 (31 May 2011). DOI: 10.1016/j.ymssp.2010.11.014.

[21] K. Ohno and M. Ohtsu, Constr. Build. Mater. 24 (12), 2339–2346 (2010). DOI: 10.1016/j.conbuildmat.2010.05.004.

[22] J. Yu et al., J. Constr. Steel Res. 86, 85–91 (2013). DOI: 10.1016/j.jcsr.2013.03.017.

[23] T. Fowler et al., J. Acoust. Emiss. 8 (3), 1–8 (1989).

[24] B. V. Tinkey, T. J. Fowler, and R. E. Klingner, Research Report 1857-2, 2002, p. 106.

[25] M. Abdelrahman, M. ElBatanouny, and P. Ziehl, Eng. Struct. 60, 258–264 (2014). DOI: 10.1016/j.engstruct.2013.12.037.

[26] F. A. Sagasta et al., Arch. Acoust. 38 (3), 303–310 (1 Sep. 2013). DOI: 10.2478/aoa-2013-0037.

[27] F. A. Sagasta et al., J. Nondestruct. Eval. 33 (4), 616–631 (1 Dec. 2014). DOI: 10.1007/s10921-014-0256-6.

[28] A. A. Anastasopoulos, A.N. Tsimogiannis, and D. A. Kouroussis, Proc. EWGAE I, 29 (2002).

[29] ASTM E976, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response (American Standard for Testing and Materials, 2010), West Conshohocken, PA, USA, pp. 1–7.

[30] O. Rioul and M. Vetterli, IEEE Signal Proc. Mag. 8 LCAV-article-1991-005, 14–38 (October, 1991). DOI: 10.1109/79.91217.

[31] A. Grossman and J.Morlet, SIAM J. Math. Anal. 15, 723–736 (1984). DOI: 10.1137/0515056.

[32] Y. Meyer, Seminaire Equations aux Derivees Partielles, École Polytechnique, Paris, 1986.

[33] S. G. Mallat, Acoust. Speech Sig. Process. IEEE Trans. 37 (12), 2091–2110 (1989). DOI: 10.1109/29.45554.

[34] S. G. Mallat, Am. Math. Soc. 315 (1), 69–87 (1989).

[35] I. Daubechies, Commun. Pur. Appl. Math. 41 (7), 909–996 (1988). DOI: 10.1002/cpa.3160410705.

[36] I. Daubechies, Philadelphia 61, 198–202 (1992).

[37] I. Daubechies, H. J. Landau, and Z. Landau, J. Fourier Anal. Appl. 1 (4), 437–478 (1994). DOI: 10.1007/s00041-001-4018-3.

[38] D. J. Yoon, W. J. Weiss, and S. P. Shah, J. Eng. Mech. 126 (3), 273–283 (Mar. 2000). DOI: 10.1061/(ASCE)0733-9399(2000)126:3(273).

[39] A. Marec, J. H. Thomas, and R. El Guerjouma, Mech. Syst. Signal Process 22 (6), 1441–1464 (31 Aug. 2008). DOI: 10.1016/j.ymssp.2007.11.029.

[40] S. E. Hamdi et al., Appl. Acoust. 74 (5), 746–757 (2013). DOI: 10.1016/j.apacoust.2012.11.018.

[41] Q. Q. Ni and M. Iwamoto, Eng. Fract. Mech. 69, 717–728 (2004). DOI: 10.1016/S0013-7944(01)00105-9.

[42] T. H. Loutas et al., Compos. Sci. Technol. 66 (10), 1366–1375 (31 Aug. 2006). DOI: 10.1016/j.compscitech.2005.09.011.

[43] V. Arumugam et al., Arabian J. Sci. Eng. 38 (5), 1087–1102 (1 May 2013). DOI: 10.1007/s13369-012-0351-x.

[44] A. Gallego et al., Surf. Coat. Technol. 201 (8), 4743–4756 (15 Jan. 2007). DOI: 10.1016/j.surfcoat.2006.10.018.

[45] M. Kharrat, et al. In31st Conference of the European Working Group on Acoustic Emission (EWGAE) Dresden, Germany, 3 Sep. 2014.

[46] C. U. Grosse et al., Constr. Build. Mater. 18 (3), 203–213 (30 Apr. 2004). DOI: 10.1016/j.conbuildmat.2003.10.010.

[47] M. E. Zitto et al., Mech. Syst. Signal Process 31 (60), 75–89 (Aug. 2015). DOI: 10.1016/j.ymssp.2015.02.006.

[48] M. E. Zitto et al., J. Acoust. Emiss. 30, 64–75 (1 Jan. 2012).

[49] M. Ohtsu, Mag. Concr. Res. 48 (177), 321–330 (1996). DOI: 10.1680/macr.1996.48.177.321.

[50] M. G. Sause, J. Acoust. Emiss. 29, 184–196 (1 Jan. 2011).

[51] P. Ziehl and M. ElBatanouny, in Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete: Fundamentals and Applications, edited by M. Ohtsu (Woodhead Publishing, 2015), pp. 217–236.

[52] M. Abdelrahman, et al., 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 6th European-American Workshop on Reliability of NDE, 2016, Vol. 1706, p. 140001. AIP Publishing, Melville, NY.

[53] M. Abdelrahman et al., Constr. Build. Mater. 95, 406–413 (2015). DOI: 10.1016/j.conbuildmat.2015.07.093.

[54] M. ElBatanouny et al., ASCE J. Mater. Civ Eng. 26 (3), 504–511 (2014). DOI: 10.1061/(ASCE) MT.1943-5533.0000845.

Metrics
Usage Shares
Total Views
36 Page Views
Total Shares
0 Tweets
36
0 PDF Downloads
0
0 Facebook Shares
Total Usage
36