Article Article
Nondestructive Characterization of Microstructure and Mechanical Properties of Heat Treated H13 Tool Steel Using Magnetic Hysteresis Loop Methodology

The aim in this article is to evaluate microstructural changes, hardness variations, and wear behavior of H13 hot work tool steel as a function of austenitizing and tempering temperature using nondestructive magnetic hysteresis loop method. To obtain different microstructural characteristics in the H13 specimens, austenitizing and tempering temperatures were varied in the range of 1,050–1,100°C and 200–650°C, respectively. The microstructural features, hardness, and wear loss were characterized using X-ray diffraction/metallographic examinations, hardness measurements, and a pin-on-disk wear tester, respectively. The relations between features obtained from the conventional methods and parameters extracted from the magnetic hysteresis loops were established. Results demonstrate that the proposed nondestructive method is able to assess the wear behavior of the heat treated H13 tool steels. Besides, a standard Generalized Regression Neural Network (GRNN) was trained with a training dataset and then used to estimate the hardness of a given sample with its measured values of magnetic parameters. Experimental results indicate that, if the training dataset has sufficient samples, the proposed method will have a very high accuracy to estimate hardness of the sample, nondestructively.

DOI: 10.1080/09349847.2019.1574942

References

1. P. M. Unterweiser, Heat Treater's Guide: Standard Practices and Procedures for Steel, American Society for Metals, (1989).

2. L. Dobrzański, J. Mazurkiewicz, and E. Hajduczek, J. Mater. Process. Technol. 157, 472–484 (2004).

3. D. Delagnes et al., Mater. Sci. Eng., A. 394 (1–2), 435–444 (2005). DOI: 10.1016/j.msea.2004.11.050.

4. P. Michaud et al., Acta Mater. 55 (14), 4877–4889 (2007). DOI: 10.1016/j.actamat.2007.05.004.

5. W. Prudente et al., Microstructural evolution under tempering heat treatment in AISI H13 hot-work tool steel. Int. J. Eng. Res. and Appl. 7 (4), 67–71 (2017).

6. Y. Guanghua et al., Met. Sci. Heat Treat. 52 (7–8), 393–395 (2010). DOI: 10.1007/s11041-010-9288-4.

7. G. A. Roberts, R. Kennedy, and G. Krauss, Tool Steels (ASM international, Metals Park, OH, 1998).

8. Y. Hirotsu and S. Nagakura, Acta Metall. 20 (4), 645–655 (1972). DOI: 10.1016/0001-6160(72)90020-X.

9. V. Gavriljuk et al., Metall. Mater. Trans. A. 45 (5), 2453–2465 (2014). DOI: 10.1007/s11661-014-2202-8.

10. P. Bała, J. Pacyna, and J. Krawczyk, J. Achiev. Mater. Manuf. Eng. 20 (1–2), 79–82 (2007).

11. G. Speich and K. Taylor, ASM Int. 1992, 243–275 (1992).

12. X. Cui et al., J. Mater. Eng. Perform. 20 (6), 1055–1062 (2011). DOI: 10.1007/s11665-010-9723-0.

13. A. Arain, Master thesis, National Library of Canada= Bibliothèque Nationale Du Canada, 1999.

14. H. K. Rafi et al., Mater. Des. 32 (1), 82–87 (2011). DOI: 10.1016/j.matdes.2010.06.031.

15. S. Lampman and T. Zorc, Metals Handbook (ASM International, 1990), Vol. 1.

16. K. Rajkumar et al., J. Magn. Magn. Mater. 312 (2), 359–365 (2007). DOI: 10.1016/j.jmmm.2006.10.1091.

17. K. Rajkumar et al., Mater. Sci. Eng., A. 464 (1–2), 233–240 (2007). DOI: 10.1016/j.msea.2007.02.006.

18. M. Kashefi et al., J. Magn. Magn. Mater. 324 (23), 4090–4093 (2012). DOI: 10.1016/j.jmmm.2012.07.029.

19. S. Khan et al., J. Mater. Process. Technol. 200 (1–3), 316–318 (2008). DOI: 10.1016/j.jmatprotec.2007.09.003.

20. M. Kashefi, S. Kahrobaee, and M. H. Nateq, J. Mater. Eng. Perform. 21 (7), 1520–1525 (2012). DOI: 10.1007/s11665-011-0047-5.

21. F. Jarrahi, M. Kashefi, and E. Ahmadzade-Beiraki, J. Magn. Magn. Mater. 385, 107–111 (2015). DOI: 10.1016/j.jmmm.2015.02.063.

22. M. Kashefi and S. Kahrobaee, J. Mater. Eng. Perform. 22 (4), 1108–1112 (2013). DOI: 10.1007/s11665-012-0369-y.

23. S. Kahrobaee, M. Kashefi, and A. S. Alam, Surf. Coat. Technol. 205 (16), 4083–4088 (2011). DOI: 10.1016/j.surfcoat.2011.02.060.

24. M. S. Amiri and M. Kashefi, J. Mater. Eng. Perform. 20 (3), 476–480 (2011). DOI: 10.1007/s11665-010-9697-y.

25. X. Hu et al., Int. J. Fatigue. 28 (3), 175–182 (2006). DOI: 10.1016/j.ijfatigue.2005.06.042.

26. C. Rodenburg and W. Rainforth, Acta Mater. 55 (7), 2443–2454 (2007). DOI: 10.1016/j.actamat.2006.11.039.

27. A. Bahrami et al., Wear. 258 (5–6), 846–851 (2005). DOI: 10.1016/j.wear.2004.09.008.

28. A. Kokosza and J. Pacyna, J. Mater. Process. Technol. 162, 327–331 (2005).

29. S. Kahrobaee and T.-H. Hejazi, J. Magn. Magn. Mater. 433, 131–140 (2017). DOI: 10.1016/j.jmmm.2017.03.015.

30. S. Kahrobaee and M. Kashefi, J. Magn. Magn. Mater. 382, 359–365 (2015). DOI: 10.1016/j.jmmm.2015.02.007.

31. S. Kahrobaee and M. Kashefi, IEEE Trans. Magn. 51 (9), 1–7 (2015). DOI: 10.1109/TMAG.2014.2324993.

32. S. Kahrobaee and M. Kashefi, J. Mater. Eng. Perform. 24 (3), 1192–1198 (2015). DOI: 10.1007/s11665-014-1337-5.

33. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, Philadelphia, 2005).

34. I. M. Elshafiey et al., in A Neural Network Approach for Solving Inverse Problems in NDE, Review of Progress in Quantitative Nondestructive Evaluation. Advances in Cryogenic Engineering, edited by D. O. Thompson and D. E. Chimenti (Springer, Boston, MA, 1991), Vol 28.

35. B. M. Lake et al., Behav. Brain Sci. 40, e253 (2017).

36. J. Adler and O. Öktem, Inverse Prob. 33 (12), 124007 (2017).

37. D. F. Specht, IEEE Trans. Neural Networks. 2 (6), 568–576 (1991). DOI: 10.1109/72.97934.

Metrics
Usage Shares
Total Views
69 Page Views
Total Shares
0 Tweets
69
0 PDF Downloads
0
0 Facebook Shares
Total Usage
69