Article Article
Feasibility investigation regarding evaluation of external wall-thickness loss in nonmagnetic tubes using a bobbin-typed electromagnetic acoustic transducer

During fabrication and practical service, nonmagnetic tubes are prone to the External Wall-thickness Loss (EWL) which leaves the tubes vulnerable to structural failure. In this paper, a bobbin-typed electromagnetic acoustic transducer is proposed for tube inspection. The feasibility of EWL evaluation by using the proposed transducer is investigated via simulations and experiments. In order for efficient simulations of Electromagnetic Acoustic Transduction (EMAT), the hybrid modeling integrating the analytical modeling and finite element modeling is established. Closed-form expressions particularly regarding the EMAT-related field quantities of electromagnetics are formulated via the Extended Truncated Region Eigenfunction Expansion (ETREE) modeling. Simulations by using the hybrid model indicate that the proposed transducer is capable of evaluating EWL in nonmagnetic tubes. In parallel, experiments with the fabricated transducer have been carried out. The experimental results are supportive of the conclusion drawn from simulations. From simulations and experiments, it can be found that EWL evaluation with the proposed bobbin-typed electromagnetic acoustic transducer is feasible, which could benefit the real-time and in-situ nondestructive evaluation of nonmagnetic tubes.

DOI: 10.1080/09349847.2018.1479811


[1] M.Rakvin, D. Markucic, and B. Hizman, Procedia Eng. 69, 1216–1224 (2014). DOI: 10.1016/j.proeng.2014.03.112.

[2] M. Machado et al., NDT & E Int. 87, 111–118 (2017). DOI: 10.1016/j.ndteint.2017.02.001.

[3] S. Lai et al., Procedia Eng. 130, 1658–1664 (2015). DOI: 10.1016/j.proeng.2015.12.334.

[4] G. Light, N. R. Joshi, and S. N. Liu, Mater. Eval. 45, 1413–1418 (1987).

[5] J. L. Rose, Mater. Eval. 68, 494–500 (2010).

[6] M. Predoi and C. Petre, Physics Procedia 70, 287–291 (2015). DOI: 10.1016/j.phpro.2015.08.156.

[7] M. Hirao and H. Ogi, EMATs for Science and Industry: Noncontacting Ultrasonic Measurements (Norwell, MA, Kluwer Academic Publishers, 2003).

[8] N. Lunn, S. Dixon, and M. D. G. Potter, NDT & E Int. 89, 74–80 (2017). DOI: 10.1016/j.ndteint.2017.04.001.

[9] C. X. Pei et al., Sens. Actuators A Phys. 258, 68–73 (2017). DOI: 10.1016/j.sna.2017.03.004.

[10] Y. Wang et al., Sensors 15, 3471–3490 (2015). DOI: 10.3390/s150203471.

[11] K. S. Hao et al., Proc. Instrumentation Meas. Technol. Conf. (I2MTC) 1–4 (2011).

[12] Y. Li et al., NDT & E Int. 79, 142–149 (2016). DOI: 10.1016/j.ndteint.2016.02.001.

[13] Y. Li, G. Y. Tian, and A. Simm, NDT & E Int. 41, 477–483 (2008). DOI: 10.1016/j.ndteint.2008.02.001.

[14] R. Ravaud et al., IEEE Trans. Magn. 46, 3585–3590 (2010). DOI: 10.1109/TMAG.2010.2049026.

[15] J. R. Bowler and T. P. Theodoulidis, J. Phys. D Appl. Phys. 38, 2861–2868 (2005). DOI: 10.1088/0022-3727/38/16/019.

[16] Y. Li et al., Int. J. Appl. Electromagn. Mechanics 45, 417–423 (2014).

[17] Y. Li et al., NDT & E Int. 88, 51–58 (2017). DOI: 10.1016/j.ndteint.2017.02.009.

[18] S. J. Xie et al., NDT & E Int. 75, 87–95 (2015). DOI: 10.1016/j.ndteint.2015.06.002.

Usage Shares
Total Views
33 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage