Article Article
Detecting degradation in reinforced concrete subjected to uniaxial compression, using the parameters of electric response to mechanical impact

The effect of uniaxial compression on the development of damage in reinforced concrete has been studied, using the parameters of the electric response to elastic impact. During the quasistatic loading of the samples at a constant speed, a weak impact is produced on the lateral surface of the sample during a specified period of time, and an electrical response to this impact is mea-sured. Consistent patterns in the changes of the parameters of the electric response with various loads have been identified. Computer simulation of the parameters of elastic waves in rein-forced concrete subjected to mechanical impact has also been used. Based on the simulation, the parameters of the electric response have been calculated using the mechanoelectrical transduction model. Good consistency of theoretical and experimental signals confirms the relationship between the electric response and the interaction of elastic waves and fractures in reinforced concrete caused by uniaxial compression. Based on the electric response data corroborated with the computational results, diagnostic criteria have been obtained which make it possible to pre-dict failure of reinforced concrete structure long before it occurs.

References

S. S. Pendhari, T. Kant, and Y. M. Desai, Compos. Struct. 84, 114 (2008). DOI: 10.1016/j.compstruct.2007.06.007.

I. Vilanova, et al., Compos. Part B Eng. 74, 42 (2015). DOI: 10.1016/j.compositesb.2015.01.006.

M. A. Aiello, F. Focacci, and A. Nanni, ACI Mater. J. 98, 332 (2001).

A. Raed, et al., Compos. Part B Eng. 43, 2125 (2012). DOI: 10.1016/j. compositesb.2012.03.007.

V. Gribniak, et al., Compos. Part. B Eng. 50, 158 (2013). DOI: 10.1016/j. compositesb.2013.02.003.

W. H. Soong, J. Raghavan, and S. H. Rizkalla, Constr. Build. Mater. 25, 2813 (2011). DOI: 10.1016/j.conbuildmat.2010.12.054.

F. Yan, Z. Lin, and M. Yang, Compos. Part. B Eng. 98, 56 (2016). DOI: 10.1016/j. compositesb.2016.04.068.

M. Pepe, et al., Compos. Part. B Eng. 50, 403 (2013). DOI: 10.1016/j. compositesb.2013.03.006.

X. Lin and Y. X. Zhang, Constr. Build. Mater. 44, 110 (2013). DOI: 10.1016/j. conbuildmat.2013.03.023.

O. Abraham, et al., Constr. Build. Mater. 37, 904 (2012). DOI: 10.1016/j. conbuildmat.2012.03.015.

D. Bui, et al., J. Nondestruct. Eval. 32, 25 (2013). DOI: 10.1007/s10921-012-0155-7.

D. G. Aggelis, A. C. Mpalaskas, and T. E. Matikas, Cem. Concr. Res. 48, 1 (2013). DOI: 10.1016/j.cemconres.2013.02.002.

A. Kyriazopoulos, et al., Constr. Build. Mater. 29, 1980 (2011). DOI: 10.1016/j. conbuildmat.2010.11.053.

C. Stergiopoulos, et al., Eng. Fail. Anal. 35, 454 (2013). DOI: 10.1016/j. engfailanal.2013.04.015.

A. Alexandridis, et al., Constr. Build. Mater. 30, 294 (2012). DOI: 10.1016/j. conbuildmat.2011.11.036.

A. Narayanan and K. V. L. Subramaniam, Constr. Build. Mater. 105, 536 (2016). DOI: 10.1016/j.conbuildmat.2015.12.148.

K. KrzemieĊ„ and I. Hager, Constr. Build. Mater. 96, 155 (2015). DOI: 10.1016/j. conbuildmat.2015.08.007.

D. Algernon, et al., J. Nondestruct. Eval. 27, 83 (2008). DOI: 10.1007/s10921-008-0034-4.

D. L. Carnì, et al., Compos. Part. B Eng. 115, 79 (2017). DOI: 10.1016/j. compositesb.2016.10.031.

H. Dai, et al., J. Nondestruct. Eval. 35, 26 (2016). DOI: 10.1007/s10921-016-0341-0.

D. Smyl, et al., Cem. Concr. Res. 91, 61 (2017). DOI: 10.1016/j.cemconres.2016.10.009.

C. Hsiao, et al., NDT&E Int. 41, 98 (2008). DOI: 10.1016/j.ndteint.2007.08.008.

A. Quiviger, et al., NDT&E Int. 45, 128 (2012). DOI: 10.1016/j.ndteint.2011.09.010.

G. Lacidogna, et al., Strain 47, 144 (2011). DOI: 10.1111/j.1475-1305.2010.00750.x.

K. Ohno and M. Ohtsu, Constr. Build. Mater. 24, 2339 (2010). DOI: 10.1016/j. conbuildmat.2010.05.004.

T. Gudra and B. Stawiski, NDT&E Int. 33, 1 (2000). DOI: 10.1016/S0963-8695(99)00028-6.

P. Antonaci, et al., Cem. Concr. Res. 40, 1106 (2010). DOI: 10.1016/j.cemconres.2010.02.017.

Q. Xia, et al., Eng. Fail. Anal. 74, 95 (2017). DOI: 10.1016/j.engfailanal.2016.12.020.

W. Dong, et al., Eng. Fail. Anal. 75, 54 (2017). DOI: 10.1016/j.engfailanal.2017.01.017.

X. Xie, et al., Res. Nondestruct. Eval. 27 (3), 125 (2016). DOI: 10.1080/ 09349847.2015.1012247.

B. Dong, et al., Res. Nondestruct. Eval. 27 (4), 216 (2016). DOI: 10.1080/ 09349847.2016.1156795.

S. Toumi, et al., Res. Nondestruct. Eval. 28 (1), 18 (2017). DOI: 10.1080/ 09349847.2016.1262977.

S. Bingöl and A. Cavdar, Res. Nondestruct. Eval. 28, 1 (2017). DOI: 10.1080/ 09349847.2016.1195466.

A. Zaki, et al., Sensors 15, 19069 (2015). DOI: 10.3390/s150819069.

D. Triantis, et al., Int. J. Fract. 175, 53 (2012). DOI: 10.1007/s10704-012-9701-7.

J. Helal, et al., Electron. J. Struct. Eng. 14, 97 (2015).

T. V. Fursa, et al., Russ. J. Nondestr. Testing 52, 463 (2016). DOI: 10.1134/S1061830916080052.

T. V. Fursa, et al., Compos. Part B Eng. 90, 392 (2016). DOI: 10.1016/j. compositesb.2015.11.026.

T. V. Fursa, et al., Russ. J. Nondestr. Testing 53, 104 (2017). DOI: 10.1134/S1061830917020012.

T. V. Fursa, D. D. Dann, and M. V. Petrov, Constr. Build. Mater. 155, 451 (2017). DOI: 10.1016/j.conbuildmat.2017.08.099.

T. V. Fursa, et al., J. Nondestruct. Eval. 36, 30 (2017). DOI: 10.1007/s10921-017-0411-y.

T. V. Fursa and D. D. Dann, Tech. Phys. 56, 1112 (2011). DOI: 10.1134/S1063784211080093.

R. W. MacCormack, AIAA Paper, St. Louis, MO, 1981.

M. Sansalone and N. J. Carino, Concr. Int. 10, 38 (1988).

D. L. Turcotte and R. Shcherbakov, Pure Appl. Geophys. 163, 1031 (2006). DOI: 10.1007/s00024-006-0058-6.

 

Metrics
Usage Shares
Total Views
10 Page Views
Total Shares
0 Tweets
10
0 PDF Downloads
0
0 Facebook Shares
Total Usage
10