
To improve the accuracy of the magnetic flux leakage (MFL) nondestructive testing in practical applications, it is very significant and key to deal with the detected MFL signals. As for the de-noising process of the MFL signals, a multilevel filtering approach based on wavelet de-noising combined with median filtering is proposed. By analyzing and comparing the de-noising properties of three wavelet families, i.e., Daubechies wavelet, Coiflets wavelet, and Symlets wavelet, two wavelet bases with the best de-noising performance are recognized and selected, namely sym6 and sym8 (the Symlets wavelet functions of order 6 and 8). Then, a new cascaded filter is constructed by combining sym6 and sym8 wavelets and cascading the median filtering method. An experimental platform is established to carry out the MFL testing, through the de-noising process for the measured MFL signals, and the results indicate that the proposed improved algorithm integrates with the merits of wavelet denoising and median filtering. Compared with the traditional wavelet de-noising, the improved algorithm can not only improve the signal-to-noise ratio (SNR), but also reduce the denoising error, resulting in enhancing signal quality to facilitate subsequent defect recognition.
DOI: 10.1080/09349847.2018.1476745
[1] Z. H. Xu et al., Insight: Non-Destr. Test. Condition Monit. 57 (9), 518–527 (2015). DOI: 10.1784/insi.2015.57.9.518.
[2] R. H. Priewald et al., IEEE Trans. Magn. 49 (1), 506–516 (2013). DOI: 10.1109/TMAG.2012.2208119.
[3] B. P. C. Rao et al., Nondestr. Test. Eval. 23 (1), 35–42 (2008). DOI: 10.1080/10589750701546994.
[4] J. A. Parra-Raad and S. Roa-Prada, J. Nondestr. Eval. 35 (1), 1–12 (2016). DOI: 10.1007/s10921-015-0329-1.
[5] D. Wu et al., J. Nondestr. Eval. 36 (2), 24 (2017). DOI: 10.1007/s10921-017-0396-6.
[6] Y. Shi et al., Sensors. 15 (12), 31036–31055 (2015). DOI: 10.3390/s151229845.
[7] G. Gao et al., Insight - Non-Destr. Test. Condition Monit. 57 (2), 98–105 (2015). DOI: 10.1784/insi.2014.57.2.98.
[8] V. Lunin and V. Barat, AIP Conf. Proc. 615, 707 (2002). DOI: 10.1063/1.1472867.
[9] S. Mukhopadhyay and G. P. Srivastava, NDT & E Int. 33 (1), 57–65 (2000). DOI: 10.1016/S0963-8695(99)00011-0.
[10] M. Afzal and S. Udpa, NDT & E Int. 35 (7), 449–457 (2002). DOI: 10.1016/S0963-8695(02)00024-5.
[11] A. A. Carvalho, J. M. A. Rebello, and L. V. S. Sagrilo, NDT & E Int. 39 (8), 661–667 (2006). DOI: 10.1016/j.ndteint.2006.04.003.
[12] S. Mukhopadhyay and A. P. Tiwari, Sig. Proc. 90 (1), 261–268 (2010). DOI: 10.1016/j.sigpro.2009.06.014.
[13] D. Mukherjee, S. Saha, and S. Mukhopadhyay, NDT & E Int. 45 (1), 111–119 (2012). DOI: 10.1016/j.ndteint.2011.08.011.
[14] Y. Sun et al., Res. Nondestr. Eval. 27 (1), 1–25 (2016). DOI: 10.1080/09349847.2015.1039100.
[15] X. Yan et al., NDT& E Int. 92, 75–81 (2017). DOI: 10.1016/j.ndteint.2017.07.017.
[16] U. Andreaus and P. Casini, Continuum Mech. Thermodyn. 28 (1–2), 361–378 (2016). DOI: 10.1007/s00161-015-0435-4.
[17] U. Andreaus et al., Struct. Control HealthMonit. 24(4),1–16 (2016).DOI: 10.1002/stc.1902.
[18] İ. Bayram, IEEE Trans. Sig. Proc. 61 (5), 1131–1142 (2013). DOI: 10.1109/TSP.2012.2232655.
[19] H. Chen et al., Measurement. 43 (4), 570–585 (2010). DOI: 10.1016/j.measurement.2010.01.001.
[20] A. S. Raj et al., Model. Earth Syst. Environ. 2 (1), 36 (2016). DOI: 10.1007/s40808-016-0091-0.
[21] M. A. Farahani et al., J. Lightwave Technol. 30 (8), 1134–1142 (2012). DOI: 10.1109/JLT.2011.2168599.
[22] S. G. Mallat, IEEE Trans. Pattern Anal.Mach. Intell. 11 (7), 674–693 (1989). DOI: 10.1109/34.192463.
[23] R. Daniela and J. P. Antoine, Math. Probl. Eng. 2009 (2009), ID124904 (2009). DOI: 10.1155/2009/124904.
[24] Y. M. Chen et al., J. Comput. Phys. 311 (C), 338–347 (2016). DOI: 10.1016/j.jcp.2016.02.013.
[25] Y. F. Sang, Atmospheric Res. 122, 8–15 (2013). DOI: 10.1016/j.atmosres.2012.11.003.
[26] M. Shoaib, A. Y. Shamseldin, and B. W. Melville, J. Hydrol. 515 (13), 47–58 (2014). DOI: 10.1016/j.jhydrol.2014.04.055.
[27] C. M. Chou, Water Resour. Manag. 25 (7), 1809–1830 (2011). DOI: 10.1007/s11269-011-9776-3.
[28] Y. Su and Z. Xu, Sig. Proc. 90 (8), 2396–2411 (2010). DOI: 10.1016/j.sigpro.2009.06.019.
[29] Y. Niu, Y. Zhao, and R. R. Ni, Sig. Proc. Image Commun. 53, 65–72 (2017). DOI: 10.1016/j.image.2017.01.008.
[30] A. Liu et al., Multimedia Tools Appl. 76 (21), 22119–22132 (2017). DOI: 10.1007/s11042-017-4845-0.
[31] Z. Shen, J. Ni, and C. Chen, Multimedia Tools Appl. 75 (4), 2327–2346 (2016). DOI: 10.1007/s11042-014-2407-2.
Usage | Shares |
---|---|
Total Views 65 Page Views |
Total Shares 0 Tweets |
65 0 PDF Downloads |
0 0 Facebook Shares |
Total Usage | |
65 |