Automated Quality Characterization for Composites Using Hybrid Ultrasonic Imaging Techniques

An enhanced technique using image processing has been developed for automated ultrasonic inspection of composite materials, such as glass/carbon-fibre-reinforced polymer (GFRP or CFRP), to ascertain their structural healthiness. The proposed technique is capable of identifying the abnormality features buried in the composite by image filtering and segmentation applied to ultrasonic C-Scan images. This work presents results performed on two composite samples with simulated delamination defects. A local gating scheme is applied to raw A-Scan data for improved contrast between defective and healthy regions in the produced C-Scan image. In this test campaign, different filtering and thresholding algorithms are evaluated and compared in terms of their effectiveness on defect identification. The accuracies of less than 3 mm and 1.11 mm were attained for the defect size and depth, respectively. The results demonstrates the applicability of the proposed technique for accurate defect localization and characterization of composite materials.

DOI: 10.1080/09349847.2018.1459989

References

[1] http://www.airbus.com/aircraftfamilies/passengeraircraft/a350xwbfamily/technologyand-innovation/ (accessed Aug. 23, 2017).

[2] E. A. Birt and R. A. Smith, Insight. 46, 681–686 (2004). DOI: 10.1784/insi.46.11.681.52280.

[3] A. S. Birks, P. McIntire, and R. E. Green, ASNT Non-Destructive Testing Handbook, Volume 7: Ultrasonic Testing, 2nd ed. (American Society for Non-destructive Testing, American Society for Metals, 1991), pp. 197–244.

[4] B. Hayman, C. Berggreen, and N. G. Tsouvalis, Proc. Of the 1st International Conference on Marine Structures (Taylor & Francis, Glasgow, UK, 2007).

[5] T. Hasiotis, E. Badogiannis, and N. G. Tsouvalis, J. Mech. Eng. 57, 192–203 (2011). DOI: 10.5545/sv-jme.2010.170.

[6] R. A. Smith, Composite Defects and Their Detection, Mater Science and Engineering, Vol-III, UNESCO-EOLSS, Sample Chapter (2009), pp. 103–143.

[7] M. R. P. D. Rao, Master dissertation, West Virginia University, 2007.

[8] P. A. Lloyd, Ultrasonics. 27, 8–18 (1989). DOI: 10.1016/0041-624X(89)90003-6.

[9] K. Imielinska et al., J. Mater. Process. Tech. 157–158, 513–522 (2004). DOI: 10.1016/j.jmatprotec.2004.07.143.

[10] L. Liu et al., Compos. Struct. 73, 303–309 (2006). DOI: 10.1016/j.compstruct.2005.02.001.

[11] J. Chang, C. Zheng, and -Q.-Q. Ni, Compos. Struct. 75, 451–456 (2006). DOI: 10.1016/j.compstruct.2006.04.040.

[12] B. R. Tittmann and R. L. Crane, Comprehensive Composite Materials. Ultrasonic inspection of composites (Elsevier, New York, 2000), Vol. 5, pp. 259–320.

[13] Z. Bergant, J. Janez, and J. Grum, Proc. of the 12th International Conference of the Slovenian Society for Non-Destructive Testing, Portoro┼ż, Slovenia. 2013.

[14] R. A. Smith et al., Insight. 51, 82–87 (2009). DOI: 10.1784/insi.2009.51.2.82.

[15] A. Ragondet, PhD thesis, University of Nottingham, 2005.

[16] http://www.zetec.com/topaz (accessed Aug. 23, 2017).

[17] P. Soille, Morphological Image Analysis: Principles and Applications (Springer, New York, 2003)

[18] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson Education, 2nd ed. (Prentice Hall, 2005).

[19] J. Yao, Image Processing in Tumor Imaging, New Techniques in Oncologic Imaging (Taylor & Francis, 2006), pp. 79–102.

[20] K. Wong, Image Anal. Segmentation Models Part B. 2, 111–182 (2005).

[21] A. Farag et al., Advanced Segmentation Techniques. Handbook of Biomedical Image Analysis I: Segmentation Models Part A. (Springer, US, 2005), pp. 479–533.

[22] C. Xu, D. Pham, and J. Prince, Ann. Rev. Biomed. Eng. Ann. Rev. 2, 315–337 (2000). DOI: 10.1146/annurev.bioeng.2.1.315.

[23] H. Zaidi, I. El-Naqa, and E. J. Nucl, Med. Mol. Imaging. 37, 2165–2187 (2010). DOI: 10.1007/s00259-010-1423-3.

[24] M. Sezgin and B. Sankur, J. Electron. Imaging. 13 (1), 146–165 (2004). DOI: 10.1117/ 1.1631315.

[25] A. K. C. Wong et al., Comput. Vis. Graph. 41, 233–260 (1988). DOI: 10.1016/0734-189X(88)90022-9.

[26] W. Tsai, Vis. Graph. 29, 377–393 (1985). DOI: 10.1016/0734-189X(85)90133-1.

[27] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, Comput. Vis. Graph. 29, 273–285 (1985). DOI: 10.1016/0734-189X(85)90125-2.

[28] N. Otsu, IEEE Trans. Systems Man. Cybernet. 9, 62–66 (1979). DOI: 10.1109/TSMC.1979.4310076.

[29] J. Kittler and J. Illingworth, Pattern. Recogn. 19, 41–47 (1986). DOI: 10.1016/0031-3203(86)90030-0.

[30] https://uk.mathworks.com/company/newsroom/mathworksannounces-release-2014aof-the-matlab-and-simulink-productfamilies.html (accessed April. 10, 2018).

[31] R. M. Haralick, S. R. Sternberg, and X. Zhuang, IEEE T Pattern. Anal. 9 (4), 532–550 (1987). DOI: 10.1109/TPAMI.1987.4767941.

[32] C. Scarponi and G. Briotti, Compos. Part. B-Eng. 31, 237–243 (2000). DOI: 10.1016/S1359-8368(99)00076-1.

[33] L. K. Huang and M. J. J. Wang, Pattern. Recogn. 28, 41–51 (1995). DOI: 10.1016/0031-3203(94)E0043-K.

[34] C. A. Glasbey, Graph. Model. Im. Proc. 55, 532–537 (1993). DOI: 10.1006/cgip.1993.1040.

Metrics
Usage Shares
Total Views
4 Page Views
Total Shares
0 Tweets
4
0 PDF Downloads
0
0 Facebook Shares
Total Usage
4