Article Article
Optimization of SAW-type Surface Wave Ultrasonic Sensors for Ultrasonic SHM

Surface acoustic waves (SAW) are particularly suited for effectively monitoring and characterizing a structure's surfaces (condition of the surface, coating, thin layer, micro-cracks, etc.), and in some cases it is necessary to permanently keep the sensors on the structures to enable continuous monitoring. This article focuses on the optimization of SAW-type interdigital sensors (or IDT sensors for InterDigital Transducer) because they can largely address this issue. Initially, the ability of piezoelectric materials (lead zirconate titanate [PZT] and Niobate de lithium) to generate SAW is studied by modeling. Then a design of an IDT sensor is defined and optimized for the generation of SAW on a substrate. Parameters such as electrode's periodicity, thickness of piezoelectric plate, and type of contact between the plate and the substrate, are studied. Finally, experimental results are compared with those obtained by modeling.


[1] A. Ruiz, N. Ortiz, A. Medina, J.-Y. Kim, and L. J. Jacobs. NDT & E International 54:19–26(2013).

[2] S. Toda, T. Fujita, H. Arakawa, and K. Toda. Ultrasonics 44:1151–1155 (2006).

[3] M. J. Sundaresan, P. F. Pai, A. Ghoshal, M. J. Schulz, F. Ferguson, and J. H. Chung. Composites: Part A 32:1357–1374 (2001).

[4] F. dell’Isola, F. Vestroni, and S. Vidoli. Research in Nondestructive Evaluation 16:101–118 (2005).

[5] I. Giorgio, L. Galantucci, A. Della Corte, and D. Del Vescovo. International Journal of Applied Electromagnetics and Mechanics 47:1051–1084 (2015).

[6] S. Tyagi and V. G. Mahesh. International Journal of Scientific & Engineering Research 3:1–4 (2012).

[7] A. V. Mamishev, K. Sundara-Rajan, and Y. Du. Proceedings of the IEEE, 92:808–845 (2004).

[8] R. Takpara, D. Fall, M. Duquennoy, M. Ouaftouh, C. Courtois, M. Rguiti, M. Gonon,

N. Maurye, G. Martic, V. Lardot, L. Seronveaux, J. Halleux, C. Pélegris, and M. Guessasma. Lebanese Science Journal 16:69–80 (2015).

[9] J. Jin, S. T. Quek, and Q. Wang. Ultrasonics 43:481–493 (2005).

[10] K. J. Na and J. L. Blackshire. NDT&E International 43:432–439 (2010).

[11] J. Deboucq, M. Duquennoy, M. Ouaftouh, F. Jenot, J. Carlier, and M. Ourak. Rev. Sci. Instrum. 82:1–7 (2011).

[12] F. Bellan, A. Bulletti, L. Capineri, L. Masotti, G. Yaralioglu, F. Degertekin, B. Khuri-Yakub, F. Guasti, and R. Edgardo. SensorsandActuatorsA123:379–387 (2005).

[13] Y. Zhao, M. Liu, D. Li, J. Li, and J. Niu. Sensors and Actuators A 154:30–34 (2009).

[14] R. Ro, R. Lee, Z. Lin, C. Sung, Y. Chiang, and S. Wu. Thin Solid Films 10:2–5 (2012).

[15] N. Ramakrishnan, A. K. Namdeo, H. B. Nemade, and R. P. Palathinkal. Procedia Engineering 41:1022–1027 (2012).

[16] V. Kutiš, G. Gálika, V. Královi, I. Rýger, E. Mojto, and T. Lalinský. Procedia Engineering 48:332–337 (2012).

[17] Ferroperm Piezoceramics A/S. (accessed 30 Nov 2016).

[18] Saint-Gobain. (accessed 30 Nov 2016).

[19] A. Vashishth and V. Gupta. Solids and Structures 46:3620–3632 (2009).

[20] D. Royer and E. Dieulesaint. Onde élastique dans les solides, Tome 1: Propagation libre et guidée. Elsevier Masson, Paris, France (1996).

[21] J. K. Na, J. L. Blackshire, and S. Kuhr. Sensors and Actuators A 148:359–365 (2008).

[22] D. Morgan. Surface-Wave Devices for Signal Processing, Studies in Electrical and Electronic Engineering. Elsevier, Amsterdam, North Holland (1991).

[23] D. Royer and E. Dieulesaint. Onde élastique dans les solides, Tome 2: Génération, interaction acousto-optique, applications. Elsevier Masson, Paris, France (1999).

[24] S. Datta. Surface Acoustic Wave Devices. Prentice-Hall, Englewood Cliffs, NJ (1986).

[25] H. Oh, W. Wang, S. Yang, and K. Lee. Sensors and Actuators A 165:8–15 (2011).


[26] W. Wang, K. Lee, I. Woo, I. Park I, and S. Yang. Sensors and Actuators A 139:2–6 (2007).

Usage Shares
Total Views
34 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage