A predictive model for characterizing hardness of D2 tool steel by eddy current method: A statistical optimization approach

Response surface modeling is a well-grounded method to identify empirical relationships between factors involved in engineering experiments. This paper presents a novel mathematical/statistical approach to design an optimal predictive model to evaluate hardness by eddy current method. A new approach has been presented to find an optimal frequency in eddy current testing which maximizes detectability and accuracy of the measured values. In order to determine the hardness values of AISI D2 tool steel during tempering, the eddy current tests were conducted by applying different values of operating frequency in the range 50–1000 Hz. Unknown heat treatment conditions estimated from eddy current tests creates a link that provides hardness estimation. The results showed that coupling the eddy current method to the proposed model acts as a high accurate hardness measuring system for the samples with unknown heat treatment conditions.

References
  1. G. A. Roberts, R. Kennedy, and G. Krauss, Tool Steels (ASM international, Metals Park, Ohio, 1998).
  2. E. Carlson, ASM Handbook (Heat Treating ASM International, Metals Park, Ohio, 1990) Vol. 4, pp. 203–206.
  3. P. M. Uterweiser, Heat Treater’s Guide: Standard Practices and Procedures for Steel (American Society for Metals, Metals Park, Ohio, 1989).
  4. S. Kahrobaee and M. Kashefi. J Magn Magn Mater. 382 (1), 359–365 (2015). DOI: 10.1016/j.jmmm.2015.02.007.
  5. D. J. Hagemaier, Fundamentals of Eddy Current Testing (American Society for Nondestructive Testing, Columbus, OH, 1990).
  6. D. E. Bray and R. K. Stanley, Nondestructive Evaluation: A Tool in Design, Manufacturing and Service (CRC press, Boca Raton, FL, 1996).
  7. P. J. Shull, Nondestructive Evaluation: Theory, Techniques, and Applications (CRC press, New York, 2016).
  8. S. Ghanei, M. Kashefi, and M. Mazinani. J Magn Magn Mater. 356 (103–110) (2014). DOI: 10.1016/j.jmmm.2014.01.001.
  9. S. Khan et al. J. Mater. Process. Tech. 200 (1), 316–318 (2008). DOI: 10.1016/j. jmatprotec.2007.09.003.
  10. S. Khan et al. J Alloys Compd. 474 (1), 254–256 (2009). DOI: 10.1016/j. jallcom.2008.06.111.
  11. K. Rajkumar et al. Mater. Sci. Engineering. 464 (1), 233–240 (2007). DOI: 10.1016/j. msea.2007.02.006.
  12. D. Mercier et al. NDT & E International. 39 (8), 652–660 (2006). DOI: 10.1016/j. ndteint.2006.04.005.
  13. M. S. Amiri and M. Kashefi. J Mater Eng Perform. 20 (3), 476–480 (2011). DOI: 10.1007/s11665-010-9697-y.
  14. M. Kashefi, S. Kahrobaee, and M. H. Nateq. J Mater Eng Perform. 21 (7), 1520–1525 (2012). DOI: 10.1007/s11665-011-0047-5.
  15. M. Zergoug et al. NDT & E International. 37 (1), 65–72 (2004). DOI: 10.1016/j. ndteint.2003.09.002.
  16. S. Konoplyuk. NDT & E International. 43 (4), 360–364 (2010). DOI: 10.1016/j. ndteint.2010.01.001.
  17. W. Yin et al. NDT & E International. 51 (1), 135–141 (2012). DOI: 10.1016/j. ndteint.2012.06.008.
  18. S. Kahrobaee and M. Kashefi. IEEE Trans Magn. 51 (9), 1–7 (2015). DOI: 10.1109/ TMAG.2015.2428673.
  19. M. S. Amiri and M. Kashefi. NDT & E International. 42 (7), 618–621 (2009). DOI: 10.1016/j.ndteint.2009.04.008.
  20. M. Kashefi and S. Kahrobaee. J Mater Eng Perform. 22 (4), 1108–1112 (2013). DOI: 10.1007/s11665-012-0369-y.
  21. S. Ghanei, M. Kashefi, and M. Mazinani. Mater Des. 50 (1), 491–496 (2013).
  22. S. Konoplyuk et al. NDT & E International. 38 (8), 623–626 (2005). DOI: 10.1016/j. ndteint.2005.02.008.
  23. X. Hao et al. Scr Mater. 58 (11), 1033–1036 (2008). DOI: 10.1016/j.scriptamat.2008.01.042.
  24. V. Gavriljuk et al. Metallurgical Mater. Trans. 45 (5), 2453–2465 (2014). DOI: 10.1007/ s11661-014-2202-8.
  25. A. Kokosza, J. Pacyna, and J. Mater Process. Tech. 162 (1), 327–331 (2005).
  26. G. Roberts, A. Grobe, and C. Moersch. Trans. Am. Soc. Metals. 39 (1), 521–548 (1947).
  27. S. Kahrobaee. T.-H. Hejazi, J. Magnetism Magn. Mater. 433, 131–140 (2017). DOI: 10.1016/j.jmmm.2017.03.015.
  28. T. H. Hejazi, M. Seyyed-Esfahani, and M. Mahootchi. Qual. Reliab Eng. Int. 31 (4), 645–658 (2015). DOI: 10.1002/qre.1622.
  29. M. Ghaffarpour and A. Aziz and T.-H. Hejazi, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications 231 (7), 571–583 (2017).
  30. T. H. Hejazi, M. Seyyed-Esfahani, and H. Badri. Proceedings of the institution of mechanical engineers, part D. J. Automobile Eng. 228 (1), 104–114 (2014): DOI: 10.1177/0954407013506568.

 

Metrics
Usage Shares
Total Views
5 Page Views
Total Shares
0 Tweets
5
0 PDF Downloads
0
0 Facebook Shares
Total Usage
5