Article Article
Algorithms for the Magnetic Assessment of Proton Exchange Membrane (PEM) Fuel Cells

An electromagnetic flaw model and imaging techniques are developed simulating the magnetic nondestructive evaluation of proton exchange membrane fuel cells. A small flaw model is introduced to simulate the perturbation in magnetic field due to pinholes in the membrane. An inversion scheme is demonstrated to reconstruct the ionic current distribution in the membrane. Methods of stray field removal are then discussed. The research objectives of the above techniques are to locate flaws and enable the determination of current density in the fuel cell membrane in the presence of stray fields produced by electrodes, current leads, and background noise sources.

References

[1] S. J. C. Cleghorn, C. R. Derouin, M. S. Wilson, and S. Gottesfeld. J. Appl. Electrochem. 28:663–672 (1998).

[2] G. Bender, M. S. Wilson, and T. A. Zawodzinski. J. Power Sources 123:163–171 (2003).

[3] J. Stumper, S. A. Campbell, D. P. Wilkinson, M. C. Johnson, and M. Davis. Electrochim. Acta 43:3773–3783 (1998).

[4] M. M. Mench, C. Y. Wang, and M. Ishikawa, J. Electrochem. Soc. 150:A1052–A1059 (2003).

[5] Ch. Wieser, A. Helmbold, and E. Gülzow. J. Appl. Electrochem. 30:803–807 (2000).

[6] J. R. Claycomb, A. Brazdeikis, M. Le, R. A. Yarbrough, G. Gogoshin, and J. H. Miller. IEEE Trans. Appl. Supercond. 13:211–214 (2003).

[7] T. Hamaz, C. Cadet, F. Druart, G. Cauffet, and M. Le-Ny. 5th International Conference Fundamentals and Development of Fuel Cells (FDFC). Karlsruhe: Germany (2013).

[8] T. Hamaz, C. Cadet, F. Druart, and G. Cauffet. Preprints of the 19th World Congress of The International Federation of Automatic Control Cape Town, South Africa, August 24–29, pp. 11482–11487 (2014).

[9] K.-H. Hauer, R. Potthast, T. Wuster, and D. Stolten, J. Power Sources 143:67–74 (2005).

[10] H. Lustfeld, M. Reißel, U. Schmidt, and B. Steffen. J. Fuel Cell Sci. Technol. 6:021012-1–021012-8 (2009).

[11] H. Lustfeld, M. Reißel, and B. Steffen. Fuel Cells 9(4):474–481 (2009).

[12] T. Katou, Y. Gotoh, N. Takahashi, and M. Izumi. Materials Trans. 53:279–284 (2012).

[13] J. P. Wikswo, Jr. IEEE Trans. Appl. Supercond. 5:74–120 (1995).

[14] J. P. Wikswo, Jr., N. G. Sepulveda, Y. P. Ma, W. P. Henry, D. J. Staton, and D. Crum. J. Nondest. Eval. 12:109–119 (1993).

 

[15] W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, Jr. J. Phys. D: Appl. Phys. 30:293–323 (1997).

[16] S. Tan, N. Sepulveda, and J. P. Wikswo. J. Comp. Phys. 122:150–164 (1995).

[17] B. Legros, P.-X. Thivel, Y. Bultel, and R. P. Nogueira. Electrochem. Comm. 13:1514–1516 (2011).

[18] N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy, and B. Ould-Bouamama. J. Power Sources 159:905–913 (2006).

[19] A. Debenjak, M. Gašperin, B. Pregelj, M. Atanasijević-Kunc, J. Petrovčič, V. Jovan, and

S. Vestnik. J. Mech. Eng. 59:56–64 (2013).

[20] J.-M., Le Canut, R. M. Abouatallah, and D. A. Harrington. J. Electrochem. Soc. 153: A857–A864 (2006).

[21] H. Wang, X.-Z. Yuan, and H. Li (eds.). PEM Fuel Cell Diagnostic Tools,37–70. CRC Press, Boca Raton, FL (2012).

Metrics
Usage Shares
Total Views
49 Page Views
Total Shares
0 Tweets
49
0 PDF Downloads
0
0 Facebook Shares
Total Usage
49