Phased Array Ultrasonic Testing for Post-Weld and OnLine Detection of Friction Stir Welding Defects

Nondestructive evaluation (NDE) techniques of phased array ultra-sonic testing (PAUT) and digital X-ray radiography were employed on friction stir (FS)-welded Aluminum Alloy (AA)-2219-T87 speci-mens. PAUT intricacies required for scanning of FS-welded speci-mens with a 10-MHz 32-element transducer are discussed. The time corrected gain (TCG) calibration is required for scanning with an increase in index offset to compensate for decrease in A-Scan signal peak amplitude. Calibration techniques to find small defects with appropriate size tolerances are also established. The NDE technique of digital X-ray radiography is compared to PAUT, where it was found that a calibrated PAUT system is able to dis-cover defects less than 0.2 mm where X-ray radiography could not. Incomplete penetration (IP), wormhole (WH), surface cavity (SC), and internal void (IV) defects are analyzed. Furthermore, an online PAUT system for FSW has been developed and successfully tested. The work provided herein will provide a gateway for an ultimate goal of an automated PAUT online sensing system.

References

[1] A. Leonard and S. Lockyer. The 4th International Symposium on Friction Stir Welding. Park City, UT (2003).

[2] R. J. Ditchburn, S. K. Burke, and C. M. Scala. NDT&E Int. 29:111–117 (1996).

[3] L. S. Rosado, T. G. Santos, M. Piedade, P. M. Ramos, and P. Vilaça. Measurement 43:1021–1030 (2010).

[4] L. S. Rosado, F. A. Cardoso, S. Cardoso, P. M. Ramos, P. P. Freitas, and M. Piedade. Sensor Actuat. A-Phys. 212:58–67 (2014).

[5] L. S. Rosado, T. G. Santos, P. M. Ramos, P. Vilaca, and M. Piedade. NDT&E Int. 51:85–93 (2012).

[6] C. Mandache, D. Levesque, L. Dubourg, and P. Gougeon. Sci. Technol. Weld. Join. 17:295–303 (2012).

[7] T. G. Santos, P. Vilaca, and R. M. Miranda. J. Mater. Process. Manu. 211:174–180 (2011).

[8] T. G. Santos, P. Vilaca, J. dos Santos, and L. Quintino. Weld. World 53:99–108 (2009).

[9] C. Mandache, L. Dubourg, A. Merati, and M. Jahazi. Mater. Eval. 66:382–386 (2008).

[10] T. G. Santos, B. S. Silva, P. D. Vilaca, J. M. C. Sousa, and L. Quintino. Soldagem Insp. 12:179–187 (2007).

[11] R. A. Smith. Insight 47:133–143 (2005).

[12] G. Deuster. Int. J. Pres. Ves. Pip. 35:173–188 (1988).

[13] D. Choqueuse and A. Lamarre. Proceedings of the 8th International Offshore and Polar Engineering Conference. ISOPE, Montreal, Canada (1998).

[14] P. Crowther. Insight. 46:525–528 (2004).

[15] M. Moles, N. Dube, and F. Jacques. Proceedings from Materials Solutions 2003 on Joining of Advanced and Specialty Materials. ASM International, Pittsburgh, PA (2004).

[16] C. Schneider and C. Bird. The 4th European-American Workshop on Reliability of NDE. Berlin, Germany (2009).

[17] R. J. Ditchburn and M. E. Ibrahim. Ultrasonic Phased Arrays for the Inspection of Thick-Section Welds. Australian Department of Defense Science and Technology Organization, Victoria, Australia (2009).

[18] Olympus Corporation. Introduction to Phased Array Ultrasonic Technology Applications: R/D Tech Guideline. 1st ed. Olympus NDT, Waltham, MA (2004).

[19] Olympus Corporation. Advances in Phased Array Ultrasonic Technology Applications, Olympus NDT, Waltham, MA (2007).

[20] W. Shi-Chang and S. Yijun. Wave Motion 29:245–265 (1999).

[21] W. D. Bruce and D. W. Paul. NDT&E Int. 39:525–541 (2006).

[22] L. R. Joseph. J. Press. Vess. T. ASME 124:273–282 (2002).

[23] J. L. Rose. IEEE Trans. Ultrason. Ferr. 47:575–583 (2000).

[24] J. L. Rose. Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge, UK (1999).

[25] L. Azar, Y. Shi, and S. C. Wooh. NDT&E Int. 33:189–198 (2000).

[26] D. Achenbach. Wave Propagation in Elastic Solids. North-Holland Publishing Co., New York, NY (1984).

[27] B. A. Auld. Acoustic Fields and Waves in Solids. 2nd ed. Vol. 2. Krieger Publishing Co., Malabar, FL (1990).

[28] L. W. Schmmer. Mod. Phys., Lett. B. 22:917–921 (2008).

[29] A. S. Birks, R. E. J. Green, and P. McIntire. Nondestructive Testing Handbook. 2nd ed. Ultrasonic Testing. Vol. 7. American Society for Nondestructive Testing, Columbus, OH (1991).

[30] B. Li, Y. Shen, and W. Hu. Material Design 32:2073–2084 (2011).

[31] C. Carpentier and J. Rudlin. The 11th European Conference on Non-Destructive Testing. Prague, Czech Republic (2014).

[32] M. W. Dewan, D. J. Huggett, T. W. Liao, M. A. Wahab, and A. M. Okeil. Material Design 92:288–299 (2015).

[33] Olympus Corporation. Flaw Detectors OmniScan MX2. Available at http://www.olym pus-ims.com/en/omniscan-mx2/ (accessed 11 December, 2015).

[34] A. Lamarre, O. Dupuis, and M. Moles. Proceedings of the 7th International Conference on Trends in Welding Research. Callaway Gardens Resort, Pine Mountain, GA (2005).

[35] C. R. Bird. Insight 46:31–36 (2004).

[36] D. Kleiner and C. R. Bird. Insight 46:85–87 (2004).

[37] D. Levesque, L. Dubourg, and A. Blouin. Nondestructive Test Eval. 26:319–333 (2011).

[38] K. J. Kirk, A. McNab, A. Cochran, I. Hall, and G. Hayward. IEEE Trans. Ultrason. Ferr. 46:311–319 (1999).

[39] R. Subbaratnam, S. T. Abraham, M. Menaka, B. Venkatraman, and B. Raj. Mater. Eval. 66:332–337 (2008).

[40] W. Johnson, F. Mauer, D. Pitchure, S. J. Norton, Y. Grinberg, and F. Bendec. J. Mater. Res. 8:1558–1566 (1993).

[41] J. L. Shih, K. T. Wu, C. K. Jen, C. H. Chiu, J. C. Tzeng, and J. W. Liaw. Sensors 13:975–983 (2013).

[42] F. Tariq, N. Naz, R. Baloch, and Faisal. J. Nondestruct. Eval. 31:17–33 (2012).

[43] E. Oberg, F. Jones, H. Horton, and H. Ryffel. Temper Designations for Aluminum Alloys in Machinery’s Handbook. 29th ed. Industrial Press, New York, NY (2012).

[44] ASME, Article 23 Ultrasonic Standards, in SE-797. The Standard Practice for Measuring Thickness by Manual Ultrasonic Pulse-Echo Contact Method. (1998).

Metrics
Usage Shares
Total Views
33 Page Views
Total Shares
0 Tweets
33
0 PDF Downloads
0
0 Facebook Shares
Total Usage
33