Nonlinear Ultrasonic Damage Characterization of Limestone

Characterization of dolomitic limestone rock samples with increasing levels of damage is presented using a nonlinear ultrasonic approach. Limestone test samples with increasing levels of damage were created artificially by exposing virgin samples to increasing temperature levels of 100, 200, 300, 400, 500, 600, and 700°C for a ninety minute period of time. These samples were first characterized using ultrasonic dilatational and shear phase velocity measurements and corresponding attenuations. Then, a nonlinear approach based upon non-collinear wave mixing of two dilatational waves was used. Criteria were used to assure that the detected scattered wave originated via wave interaction in the limestone and not from nonlinearities in the testing equipment. It was observed that both the dilatational velocity and the noncollinear wave mixing approach are able to characterize the level of damage in limestone rock. However, the nonlinear approach is more sensitive to damage accumulation by about two orders of magnitude.

References

[1] M. Kuzvart. Industrial Minerals and Rocks. Vol. 18, Elsevier, New York (1984).

[2] R. C. Freas, J. S. Hayden, and C. A. Pryor Jr. In Industrial Minerals and Rocks: Commodities, Markets, and Uses. Seventh ed., J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Krukowski (Eds.) Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado (2006).

[3] R. A. Guyer and P. A. Johnson. Nonlinear Mesoscopic Elasticity: The Complex Behavior of Granular Media Including Rocks and Soil. Wiley-VCH, Weinheim, Germany (2009).

[4] R. A. Guyer and P. A. Johnson. Physics Today 52(4):30–36 (1999).

[5] B. F. Miglio, D. M. Richardson, T. S. Yates, and D. West. Dimension Stone Cladding: Design, Construction, Evaluation, and Repair, ASTM STP 1394. K. R. Hoigard (Ed.), ASTM, W. Conshohocken, Pennsylvania (2000).

[6] P. A. Johnson, B. Zinszner, and P. N. J. Rasolofosaon. Journal of Geophysical Research 101(B5):11553–11564 (1996).

[7] P. A., Johnson, T. J. Shankland, R. J. O’Connell, and J. N. Albright. Journal of Geophysical Research 92(B5):3597–3602 (1987).

[8] P. A. Johnson and T. J. Shankland. Journal of Geophysical Research 94(B12):17729–17733 (1989).

[9] E. Franzoni, E. Sassoni, G. W. Scherer, and S. Naidu. Journal of Culture Heritage 14S: e85–e93 (2013).

[10] E. Sassoni, S. Naidu, and G. W. Scherer. Journal of Culture Heritage 12:346–355 (2011).

[11] G. S. Kumar, A. Ramakrishnan, and Y.-T. Hung. In Advanced Physicochemical Treatment Technologies Handbook of Environmental Engineering. Vol. 5, L. K. Wang, Y. T. Hung, and N. K. Shammas (Eds.) Humana Press, New Jersey (2007).

[12] H. T. S. Britton, S. G. Gregg, and G. W. Winsor. Trans. Faraday Soc. 48:70–75 (1952).

[13] S. Siegesmund, K. Ullemeyer, T. Weiss, and E. K. Tschegg. International Journal of Earth Science 89170–182 (2000).

[14] A. A. Maradudin. In Nonequillibrium Photon Dynamics. W. E. Brown (Ed.) Plenum Press, New York (1985).

 

[15] G. A. Maugin. In Advances in Applied Mechanics. J. W. Hutchinson (Ed.) Academic Press, New York, Vol. 23 (1983).

[16] G. L. Jones and D. R. Kobett. Journal of Acoustical Society of America 35(1):5–10 (1963).

[17] V. A. Korneev and A. Demcenko. Journal of Acoustical Society of America 135(2):591–598 (2013).

[18] Y. Hiki and K. Mukai. Journal of Physical Society of Japan 34(2):454–461 (1973).

[19] W. Sachse and Y.-H. Pao. Journal of Applied Physics 49(1):4320–4327 (1978).

[20] M. McGovern, B. Behnia, W. G. Buttlar, and H. Reis. Insight 55(11):1–9 (2013).

[21] M. McGovern, B. Behnia, W. G. Buttlar, and H. Reis. Insight 55(11):10–14 (2013).

[22] R. Christensen. Theory of Viscoelasticity: An Introduction. Second Edition. Academic Press, New York (1982).

Metrics
Usage Shares
Total Views
16 Page Views
Total Shares
0 Tweets
16
0 PDF Downloads
0
0 Facebook Shares
Total Usage
16