Nondestructive Evaluation on Strain Sensing Capability of Piezoelectric Sensors for Structural Health Monitoring

A kind of strain-sensing-based piezoelectric sensor was fabricated, and the mixture of cement powder and epoxy resin was used as the packaging layer. A nondestructive strain sensitivity testing method based on strain-sensing capability of piezoelectric sensor is presented. The theoretical foundation indicates that output voltage of piezoelectric sensor and strain of structure keep linear relationship when corresponding parameters are ascertained. Quasi-static responses and low-frequency (0–40 Hz) dynamic responses of piezoelectric sensors and strain gauges are analyzed. The results show that the piezoelectric sensors are sensitive and can accurately reflect the strain variation of structures. The quantification of output voltage and strain is investigated, and quasi-static and dynamic sensitivities were acquired (159.52–515.48 mV/με). With increasing of vibration frequency, the area of hysteresis loop decreases, and the strain sensitivity of sensor increases. Combining sensitivities with output voltages of sensors, the strain variation of structures could be obtained, which exhibit great application potentials of piezoelectric sensors for structural strain monitoring in low-frequency vibrations in civil engineering.


[1] Japan Society of Civil Engineers. (JSCE). JSCE Guidelines for Concrete. Japan Society of Civil Engineers, Tokyo, Japan (2005).

[2] F. N. Catbas and A. E. Aktan. J. Struct. Eng. 128:1026–1036 (2002).

[3] D. Pines and A. E Aktan. Progr. Struct. Eng. Mater. 4:372–380 (2002).

[4] A. Madeo, L. Placidi, and G. Rosi. Res. Nondestruct. Eval 25:99–124. (2013).

[5] A. Alvandi and C. Cremona. J. Sound. Vib. 292:179–202 (2006).

[6] A. P. Adewuyi, Z. S. Wu, and N. H. M. K. Serker. Struct. Health. Monit. 8:443–461 (2009).

[7] C. P. Fritzen. The 5th International Workshop on Structural Health Monitoring, Stanford (2005).

[8] I. Payo and J. M. Hale. Sensor. Actuat. A-Phys. 163:150–158 (2010).

[9] E. Matsumoto, S. Biwa, K. Katsumi, Y. Omoto, K. Iguchi, and T. Shibata. NDT&E Int. 37:57–64 (2004).

[10] G. Rosi, J. Pouget, and F. dell’Isola. Eur. J. Mech. A-Solid. 29:859–870 (2010).

[11] C. Maurini, J. Pouget, and F. dell’Isola. Comput. Struct. 84:1438–1458 (2006).

[12] M. Porfiri, F. dell’Isola, and E. Santini. Int. J. Appl. Electrom. 21:69–87 (2005).

[13] M. Porfiri, F. dell’Isola, and F. M. F. Mascioli. Int. J. Circ. Theor. App. 32:167–198 (2004).

[14] U. Andreaus, F. Dell’Isola, and M. Porfiri. J. Sound Vib. 10:625–659 (2004).

[15] I. Giorgio, L. Galantucci, A. Della Corte, and D. Del Vescovo. Int. J. Appl. Electromagn. Mech. 47:1051–1084 (2015).

[16] A. K. Pandey, M. Biswas, and M. M. Samman. J. Sound Vib. 145:321–332 (1991).

[17] D. Rees, W. K. Chiu, and R. Jones. Smart Mater. Struct. 2:202–205 (1992).

[18] S. Egusa and N. Iwasawa. J. Sound Vib. 28:1667–1672 (1993).

[19] J. M. Hale and J. Tuck. Part C: J. Mech. Eng. 213:1613–1622 (1999).

[20] S. Egusa and N. Iwasawa. Smart Mater. Struct. 9:438–445 (1998).

[21] J. M. Hale, J. R. White, R. Stephenson, and F. Liu. Part C: J. Mech. Eng. 219:1–9 (2005).

[22] F. X. Zhang and L. K. Wang. Modern Piezoelectrics. Beijing Science Press, Beijing (2001).

Usage Shares
Total Views
54 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage