Article Article
Assessment of Thermal Aging of Aluminum Alloy by Acoustic Nonlinearity Measurement of Surface Acoustic Waves

Acoustic nonlinearity measurements via contact and noncontact generations of surface acoustic waves (SAWs) were performed in order to characterize the thermal aging of aluminum alloy. The experiments were conducted on aluminum alloy samples (Al6061-T6) that were heat-treated at 220°C for different times (0 min, 20 min, 40 min, 1 h, 2 h, 10 h, 100 h, 1,000 h) and thus had the different levels of thermal aging. The acoustic nonlinearity of the specimens in two types of SAWs was observed according to the thermal aging. The fractional changes in the acoustic nonlinearity exhibited similar trends in both contact and noncontact SAWs, showing that the acoustic nonlinearity measurement via SAWs is independent of the SAW-excitation method. Furthermore, the fractional changes agreed well with the variation in the yield strength, which was a minimum when the acoustic nonlinearity reached its first peak. Then, the acoustic nonlinearity drastically dropped while the yield strength increased to its highest value. Thus, the variation in the acoustic nonlinearity can be perceived as an indicator of the aging level. These results demonstrate the potential feasibility of acoustic nonlinearity measurements via SAWs for the nondestructive evaluation of material degradations.

References

[1] R. S. Xiao, G. Ambrosy, T. C. Zuo, and H. Hugel. Journal of Materials Science Letters

20:2163–2165 (2001).

[2] K. R. Brown, M. S. Venie and R. A. Woods. Jom-Journal of the Minerals Metals &

Materials Society 47:20–23 (1995).

[3] X. Fang, M. Song, K. Li and Y. Du. Journal of Mining and Metallurgy Section

B-Metallurgy 46:171–180 (2010).

[4] Y. X. Xiang, M. X. Deng, F. Z. Xuan and C. J. Liu. Ndt & E International 44:768–774

(2011).

[5] M. Amura and M. Meo. Smart Materials and Structures 21:045001 (2012).

[6] J. L. S. Blackshire, S.; Na, J.; Frouin, J. Review of Progress in Quantitative Nondestructive

Evaluation 22:1479–1488 (2003).

[7] K.-Y. Jhang. International Journal of Precision Engineering and Manufacturing 10:123–

135 (2009).

[8] W. Li and Y. Cho. Experimental Mechanics 54:1309–1318 (2014).

[9] W. Li, Y. Cho and J. D. Achenbach. Smart Materials and Structures 21:085019 (2012).

[10] J. S. Valluri, K. Balasubramaniam and R. V. Prakash. Acta Materialia 58:2079–2090

(2010).

[11] S. W. Cho, S. H. Cho, C. S. Park, D. C. Seo and K. Y. Jhang. Journal of the Korean

Society for Nondestructive Testing 34:277–282 (2014).

[12] J. H. Cantrell and W. T. Yost. Journal of Applied Physics 81:2957-2962 (1997).

[13] J. Herrmann, J. Y. Kim, L. J. Jacobs, J. M. Qu, J. W. Littles and M. F. Savage. Journal of

Applied Physics 99:124913 (2006).

[14] K. Y. Jhang, J. Lee and T. Lee. Materials Transactions 53:303-307 (2012).

[15] V. V. S. J. Rao, E. Kannan, R. V. Prakash and K. Balasubramaniam. Journal of Applied

Physics 104:123508 (2008).

[16] S. V. Walker, J. Y. Kim, J. M. Qu and L. J. Jacobs. Ndt & E International 48:10–15

(2012).

[17] P. Liu, H. Sohn and T. Kundu. Journal of the Korean Society for Nondestructive Testing

34:419–427 (2014).

[18] D. J. Barnard, G. E. Dace and O. Buck. Journal of Nondestructive Evaluation 16:67-75

(1997).

[19] W. Li, Y. Cho, J. Lee and J. D. Achenbach. Experimental Mechanics 53:775–781 (2013).

[20] D. Torello, S. Thiele, K. H. Matlack, J. Y. Kim, J. Qu and L. J. Jacobs. Ultrasonics

56:417–426 (2015).

[21] Y. X. Xiang, M. X. Deng and F. Z. Xuan. Journal of Nondestructive Evaluation 33:279–

287 (2014).

[22] Y. X. Xiang, M. X. Deng, F. Z. Xuan and C. J. Liu. Ultrasonics 51:974–981 (2011).

[23] M. H. Liu, J. Y. Kim, L. Jacobs and J. M. Qu. Ndt & E International 44:67–74 (2011).

[24] D. T. Zeitvogel, K. H. Matlack, J. Y. Kim, L. J. Jacobs, P. M. Singh and J. M. Qu. Ndt &

E International 62:144–152 (2014).

[25] S. Choi, H. Seo and K. Y. Jhang. Research in Nondestructive Evaluation 26:13–22

(2015).

[26] S. Punnose, A. Mukhopadhyay, R. Sarkar and V. Kumar. Materials Science and

Engineering a-Structural Materials Properties Microstructure and Processing 607:476–

481 (2014).

[27] G. Shui, J. Y. Kim, J. Qu, Y. S. Wang and L. J. Jacobs. Ndt & E International 41:326-329

(2008).

[28] S. Thiele, J. Y. Kim, J. M. Qu and L. J. Jacobs. Ultrasonics 54:1470–1475 (2014).

[29] J. H. Cantrell and X. G. Zhang. Journal of Applied Physics 84:5469–5472 (1998).

[30] T. Nam, S. Choi, T. Lee, K. Y. Jhang and C. S. Kim. Journal of the Korean Physical

Society 57:1212–1217 (2010).

[31] G. Kim, C.-W. In, J.-Y. Kim, K. E. Kurtis and L. J. Jacobs. NDT & E International

67:64-70 (2014).

[32] J. Frouin, Sathish, S., Matikas, T. E., & Na, J. K. Journal of Materials Research 14:1295–

1298 (1999).

[33] H. Seo, S. Choi and K. Y. Jhang. Nondestructive Evaluation/Testing (FENDT), 2014

IEEE Far East Forum on 2014:221-224 (2014).

[34] M. A. Breazeale and D. O. Thompson. Applied Physics Letters 3:77-78 (1963).

[35] K. H. Matlack, J. J. Wall, J. Y. Kim, J. Qu, L. J. Jacobs and H. W. Viehrig. Journal of

Applied Physics 111:(2012).

[36] I.Dutta, S. M. Allen and J. L. Hafley. Metallurgical Transactions a-Physical Metallurgy

and Materials Science 22:2553–2563 (1991).

[37] R. K. W. Marceau, A. de Vaucorbeil, G. Sha, S. P. Ringer and W. J. Poole. Acta

Materialia 61:7285–7303 (2013).

[38] M. Murayama and K. Hono. Acta Materialia 47:1537–1548 (1999).

[39] M. Murayama, K. Hono, M. Saga and M. Kikuchi. Materials Science and Engineering

a-Structural Materials Properties Microstructure and Processing 250:127–132 (1998).

[40] M. Song. Materials Science and Engineering a-Structural Materials Properties

Microstructure and Processing 443:172-177 (2007).

[41] G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper. Acta Materialia 46:3893-3904

(1998).

Metrics
Usage Shares
Total Views
114 Page Views
Total Shares
0 Tweets
114
0 PDF Downloads
0
0 Facebook Shares
Total Usage
114