Absolute Measurement and Relative Measurement of Ultrasonic Nonlinear Parameters

The ultrasonic nonlinear parameter is measured from the amplitudes of the harmonic frequency components generated during the propagation of ultrasonic waves in a material. There are two definitions for this parameter: absolute and relative. The absolute parameter is defined by the displacement ampli-tude; however, it is difficult to measure because of the very small displacement amplitude of the harmonic components. Conversely, the relative parameter is defined by the amplitude of the detected signal, regardless of displacement. Many researchers use the relative parameter because it is easier to measure, although it is only available for a relative comparison of different materials. However, it has not yet been verified that the ratio of the relative parameters between two materials is identical to that of the absolute parameters. In this study, we make it clear that the ratio of the relative parameters is inher-ently not identical to that of the absolute parameters, but that they can be identical to each other by compensating for material-dependent differences, such as detection-sensitivity and wavenumber. For verification, the absolute and relative parameters were measured for two different materials. The results showed that the ratios of absolute and relative para-meters were in good agreement after compensation.

References

[1] K.-Y. Jhang. IEEE T. Ultrason. Ferr. 47:540–548 (2000).

[2] M. Nicolas and A. Deschamps. Acta. Mater. 51:6077–6094 (2003).

[3] Y. Xiang, M. Deng, and F. Z. Xuan. J. Nondestruct. Eval. 33:279–287 (2014).

[4] A. Hikata, B. B. Chick, and C. Elbaum. J. Appl. Phys. 36:229–236 (1965).

[5] C. S. Kim, C. Y. Hyun, and K. Y. Jhang. Int. J. Mod. Phys. B. 25:1385–1392 (2011).

[6] J. H. Cantrell. J. Appl. Phys. 100:063508 (2006).

[7] J. Kim and K.-Y. Jhang. Adv. Mater. Sci. Eng. 2013:407846 (2013).

[8] J. Park, M. Kim, B. Chi, and C. Jang. NDT&E. Int. 54:159–165 (2013).

[9] W. B. Gauster and M. A. Breazeale. Rev. Sci. Instrum. 37:1544–1548 (1966).

[10] W. T. Yost and J. H. Cantrell. Rev. Sci. Instrum. 63:4182–4188 (1992).

[11] D. C. Hurley and C. M. Fortunko. Meas. Sci. Technol. 8:634–642 (1997).

[12] D. J. Barnard, G. E. Dace, and O. Buck. J. Nondestruct. Eval. 16:67–75 (1997).

[13] G. E. Dace, R. B. Thompson, and O. Buck. Rev. Prog. Q. 11B:2069–2076 (1992).

[14] D. J. Barnard. Appl. Phys. Lett. 74:2447–2449 (1999).

[15] G. Ren, J. Kim, and K. Y. Jhang. Ultrasonics 56:539–544 (2015).

[16] J. H. Cantrell and W. T. Yost. J. Appl. Phys. 81:2957–2962 (1997).

[17] G. E. Dace, R. B. Thompson, L. J. H. Brasche, D. K. Rehbein, and O. Buck. Rev. Prog. Q. 10B:1685–1692 (1991).

[18] F. J. Harris. Proc. IEEE 66:51–83 (1978).

[19] K. H. Matlack, H. A. Bradley, S. Thiele, J.-Y. Kim, J. J. Wall, H. J. Jung, J. Qu, and L. J. Jacobs. NDT&E. Int. 71:8–15 (2015).

[20] I. H. Lee, D. S. Son, I. H. Choi, T. H. Lee, and K.-Y. Jhang. J. Korean. Soc. Nondestruct. Test. 27:576–581 (2007).

[21] R. B. Thompson, O. Buck, and D. O. Thompson. J. Acoust. Soc. Am. 59:1087–1094 (1976).

[22] P. Li, W. P. Winfree, W. T. Yost, and J. H. Cantrell. Ultrason. 1983:1152–1156 (1983).

[23] T. Kang, T. Lee, S.-J. Song, and H.-J. Kim. J. Korean. Soc. Nondestruct. Test. 33:14–19 (2013).

[24] P. Li, W. T. Yost, J. H. Cantrell, and K. Salama. Ultrason. 1985:1113–1115 (1985).

[25] J. Kim and K.-Y. Jhang. Trans. Korean Soc. Mech. Eng. A 38:1133–1137 (2014).

Metrics
Usage Shares
Total Views
4 Page Views
Total Shares
0 Tweets
4
0 PDF Downloads
0
0 Facebook Shares
Total Usage
4