Article Article
Assessment of Acoustic Nonlinearity Parameters Using an Optimized Data-Fitting Method with Multi-Gaussian Beam Model-Based Diffraction Correct

This article presents a novel approach to determine the nonlinearity parameter using an optimized data fitting method. Based on the quasilinear theory of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation, the fundamental and second harmonic pressure fields are expressed using multi-Gaussian beam (MGB) models which separate attenuation and diffraction effects from the plane wave solutions. The developed diffraction corrections are used with a curve-fitting method to extract the nonlinearity parameter together with other acoustic parameters including the attenuation coefficients at the fundamental and second harmonic frequencies. The source nonlinearity is also considered in the fitting process. The proposed scheme is validated through experiments in water and shows that a reliable nonlinearity parameter can be acquired within the range of suitable input power that satisfies the quasilinear approximation involved.

  • F. Prieur, S. P. Nasholm, A. Austeng, F. Tichy, and S. Holm. IEEE J. Oceanic Eng. 37:467–477 (2012).
  • K. D. Wallace, C. W. Lloyd, M. R. Holland, and J. G. Miller. Ultrasound Med. Biol. 33:620–629 (2007).
  • L. Bjorno. Ultrasonics 24:254–259 (1986).
  • A. Kumar, C. J. Torbet, J. W. Jones, and T. M. Pollock. J. Appl. Phys. 106:024904 (2009).
  • J.-Y. Kim, L. J. Jacobs, J. Qu, and J. W. Littles. J. Acoust. Soc. Am. 120:1266–1273 (2006).
  • J. H. Cantrell. Proc. Royal. Soc. London Series A–Math. Phys. Eng. Sci. 460:757–780 (2004).
  • G. E. Dace, R. B. Thompson, and O. Buck. Rev. Prog. Quant. Nondestr. Eval. 11B:2069–2076 (1991).
  • F. V. Meulen and L. Haumesser. Appl. Phys. Let. 92:214106 (2008).
  • S. R. Best, A. J. Croxford, and S. A. Neild. Ultrasonics 54:442–450 (2014).
  • C. Reilly and K. J. Parker. J. Acoust. Soc. Am. 86:2339–2348 (1989).
  • W. K. Law, L. A. Frizzell, and F. Dunn. Ultrasound Med. Biol. 11:307–318 (1985).
  • C. Pantea, C. F. Osterhoudt, and D. N. Sinha. Ultrasonics 53:1012–1019 (2013).
  • F. Dunn, W. K. Law, and L. A. Frizzel. IEEE Ultrason. Symp. 1:527–532 (1981).
  • D. J. Barnard, G. E. Dace, and O. Buck. J. Nondest. Eval. 16:67–75 (1997).
  • A. O. Williams Jr. J. Acoust. Soc. Am. 23:1–6 (1951).
  • P. H. Rogers and A. L Van Buren. J. Acoust. Soc. Am. 55:724–728 (1974).
  • K. Yamada and Y. Fujii. J. Acoust. Soc. Am. 40:1193–1194 (1966).
  • K. Beissner. Acustica 49:212–217 (1981).
  • T. L. Szabo. IEEE Ultrason. Symp. 1:675–678 (1991).
  • F. Ingenito and A. O. Williams Jr. J. Acoust. Soc. Am. 49:319–328 (1971).
  • W. N. Cobb. J. Acoust. Soc. Am. 73:1525–1531 (1983).
  • D. C. Hurley and C. M. Fortunko. Meas. Sci. Technol. 8:634–642 (1997).
  • H. Jeong, S. Zhang, S. Cho, and X. Li. Ultrasonics 70:199–203 (2016).
  • A. L. Thuras, R. T. Jenkins, and H. T. O’Neil. J. Acoust. Soc. Am. 6:173–180 (1935).
  • M. F. Hamilton and D. T. Blackstock (Eds.). Nonlinear Acoustics. Academic Press, San Diego, CA (2008).
  • H. Jeong and L. W. Schmerr Jr. Research Nondestruct. Eval. 19:87–103 (2008).
  • L. W. Schmerr Jr. and S.-J. Song. Ultrasonic Nondestructive Evaluation Systems: Models and Measurements. Springer, New York, NY (2007).
  • X. Zhao and T. Gang. Ultrasonics 49:126–130 (2009).
  • D. S. Ding, Y. A. Shui, J. B. Lin, and D. Zhang. J. Acoust. Soc. Am. 100:727–733 (1996).
  • V. Labat, J. P. Remenieras, O. Bou Matar, A. Ouahabi, and F. Patat. Ultrasonics 38:292–296 (2000).
  • J. J Wen and M. A. Breazeale. J. Acoust. Soc. Am. 83:1752–1756 (1988).
  • H. J. Kim, L. W. Schmerr Jr., and A. Sedov. J. Acoust. Soc. Am. 119:1971–1978 (2006).
  • D. Huang and M. A. Breazeale. J. Acoust. Soc. Am. 106:1771–1781 (1999).
  • D. J. Barnard. Appl. Phys. Let. 74:2447–2449 (1999).
  • J. Wu. J. Acoust. Soc. Am. 99:3380–3384 (1996).

Usage Shares
Total Views
64 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage