Study on Metal Magnetic Memory Testing Mechanism

Compared with traditional nondestructive testing technologies, the method of metal magnetic memory (MMM) is a more effective way in the earlier injury diagnosis of ferromagnetic materials, but the investigation of the MMM testing mechanism is limited. In order to study the mechanism of MMM method, in this article, the relationship between stress concentration state and spontaneous magnetic flux leakage (SMFL) signal is analyzed by quantum theory. The results demonstrate that the fundamental reason for SMFL is lattice distortion leaded by stress concentration, and the rising of stress causes the SMFL signal changing linearly. The theoretical calculation results in this article are in very good agreement with experimental results.

References
  1. Z. J. Wan, J. B. Liao, Y. K. Wang, and G. F. Yin. Chinese Journal of Scientific Instrument 32:19–25 (2011).
  2. J. Liu and J. Feng. Chinese Journal of Scientific Instrument 32:26–32 (2011).
  3. W. X.Gao, Y.H.Hu, X. Y. Mu, and X. M. Wu. Chinese Journal of Scientific Instrument 32:1215–1224 (2011).
  4. A. A. Doubov. Metal Science and Heat Treatment 39:401−402 (1997).
  5. A. A. Dubov. Chemical and Petroleum Engineering 47:837–839 (2011).
  6. Z. D. Wang, K. Yao, B. Deng, and K. Q. Ding. Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT&E International 43(10):354–359 (2010).
  7. A. A. Doubov. The express technique of welded joints examination with use of metal magnetic memory. NDT& E International 33(6):351–362 (2000).
  8. J. B. Goodman and R. J. Leveque. On the accuracy of stable schemes for 2D scalar conservation laws. Math. Comput., V45:15–21 (1985).
  9. S.-l. Huang, L.-m. Li, K.-r. Shi, and X.-f. Wang. SHI, et al. Magnetic field properties caused by stress concentration. J. Cent. South Univ. Technol. 11(1):23–26 (2004).
  10. DC. Jiles. Theory of the magnetoechanical effect, Journal of Physics D-Applied Physics, V28:1537–1546 (1995).
  11. M. D. Segall, J. D. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14:2717–2744 (2002).
  12. J. Q. Zhu. Energy conversion of free electron laser. Acta Phys. Sin., 45(1): 52–57 (1996).
  13. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136:B864–B871 (1964).
  14. W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140:A1133–A1138 (1965).
  15. G. A. De Wijs, G. Kresse, L. Vocadlo, D. Dobson, D. Alfe, M. J. Gillan, and G. D. Price. The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature, 392:805–807 (1998).
  16. Y. Q. Wang, F. M. Yang, C. P. Chen. Structure and magnetic properties of Y2Fel7-xMnx compounds(x=0-6). J. Alloy Compounded 24(2):66–69 1996.
  17. F. Yang and X. F. Bi. First-principle study on the electronic structure and magnetic properties in Fe/MgO/Fe magnetic tunnel junction with Mg insertion layer. Journal of Magnetism and Magnetic Materials, 320:2159–2163 (2008).
  18. J. Sanchez, J. Fullea, C. Andrade, et al. Hydrogen in-iron: stress and diffusion. Phys. Rev. B, 78(1):113–131 (2011).
  19. Y. Kakehashi and M. A. R. Patoary. First-Principles Dynamical Coherent-Potential Approximation Approachto the Ferromagnetism of Fe, Co, and Ni. Journal of the Physical Society of Japan, 11(3):1683–1694 (2011).
  20. S. M. Azar and B. A. Hamad. Structural, electronic and magnetic properties of Fe3-xMnxZ (Z = Al, Ge, Sb) Heusler alloys. Journal of Magnetism and Magnetic Materials, V324:1776–1785 (2012).
  21. G. Rahman and I. G. Kim. A first-principles investigation on the effects of magnetism on the Bain transformation of -phase FeNi systems. J. Pl. Phys., V1:1–19 (2012).
Metrics
Usage Shares
Total Views
101 Page Views
Total Shares
0 Tweets
101
0 PDF Downloads
0
0 Facebook Shares
Total Usage
101