Article Article
Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than at pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. ORNL is also building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.

References
  1. Anderson IS, McGreevy, Robert, Bilheux, Hassina Z. (Eds.): Neutron Imaging and Applications: A Reference for the Imaging Community. Springer 2009.
  2. Kardjilov N, Manke I, Hilger A, Strobl M, Banhart J: Neutron imaging in materials science. Materials Today 2011, 14(6):248-256.
  3. Kardjilov N, Hilger A, Manke I, Strobl M, Dawson M, Banhart J: New trends in neutron imaging. Nucl Instrum Meth A 2009, 605(1-2):13-15. 22
  4. Mukherjee PP, Mukundan R, Spendelow JS, Davey JR, Borup RL, Hussey DS, Jacobson DL, Arif M: High Resolution Neutron Imaging of Water in the Polymer Electrolyte Fuel Cell Membrane. ECS Transactions 2009, 25(1):505-512.
  5. Lehmann EH, Kaestner A, Hartmann S: Progress and Visions in Future Neutron Imaging. Basic Research on Concrete and Applications 2011:35-46.
  6. Lehmann EH, Wagner W: Neutron imaging at PSI: a promising tool in materials science and technology. Appl Phys A 2010, 99(3):627-634.
  7. Schillinger B, Calzada E, Lorenz K: Modern neutron imaging: Radiography, tomography, dynamic and phase contrast imaging with neutrons. Sol St Phen 2006, 112:61-71.
  8. Toops TJ, Bilheux HZ, Voisin S, Gregor J, Walker L, Strzelec A, Finney CEA, Pihl JA: Neutron tomography of particulate filters: a non-destructive investigation tool for applied and industrial research. Nucl Instrum Meth A 2013, 729:581-588.
  9. Nanda J, Bilheux H, Voisin S, Veith GM, Archibald R, Walker L, Allu S, Dudney NJ, Pannala S: Anomalous Discharge Product Distribution in Lithium-Air Cathodes. J Phys Chem C 2012, 116(15):8401-8408.
  10. Crow L, Robertson L, Bilheux H, Fleenor M, Iverson E, Tong X, Stoica D, Lee WT: The CG1 instrument development test station at the high flux isotope reactor. Nucl Instrum Meth A 2011, 634:S71-S74.
  11. H. Z. Bilheux J-CB, W. B. Bailey, W. S. Keener, L. E. Davis, K. W. Herwig: Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research. Biomedical Science and Engineering Center Conference (BSEC) 2014.
  12. Tremsin AS, Vallerga JV, McPhate JB, Siegmund OHW, Hull JS, Feller WB, Crow L, Cooper RG: High resolution neutron imaging at high counting rates with noiseless readout. 2007 IEEE Nuclear Science Symposium Conference Record, Vols 1-11 2007:270-275.
  13. Tremsin AS, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB, Lehmann E, Kaestner A, Boillat P, Panzner T, Filges U: Neutron radiography with sub-15 mu m resolution through event centroiding. Nucl Instrum Meth A 2012, 688:32-40.
  14. Tremsin AS, Vallerga JV, McPhate JB, Siegmund OHW, Raffanti R: High Resolution Photon Counting With MCP-Timepix Quad Parallel Readout Operating at > 1 KHz Frame Rates. IEEE T Nucl Sci 2013, 60(2):578-585.
  15. Kihm KD, Hight B, Kirchoff E, Yi H, Rosenfeld J, Rawal S, Hussey D, Jacobson D, Bilheux H, Walker L et al: Neutron Tomography of Lithium (Li) Coolant inside a Niobium (Nb) Heat Pipe. J Heat Trans-T Asme 2014, 136(8).
  16. Kirchoff E, Kihm KD, Rosenfeld J, Rawal S, Bilheux H, Walker L, Voisin S, Pratt D, Swanson A: Neutron Tomography of Lithium (Li) Menisci inside a Molybdenum (Mo) Heat Pipe. J Heat Trans-T Asme 2013, 135(8).
  17. K. Kihm, E. Kirchoff, M. Golden, J. Rosenfeld, S. Rawal, D. Pratt, A. Swanson, H. Bilheux, L. Walker, S. Voisin, D. Hussey: Neutron imaging of alkali metal heat pipes. Physics Procedia 2013, 43.
  18. Watkins T, Bilheux H, An K, Payzant A, Dehoff R, Duty C, Peter W, Blue C, Brice C: Neutron Characterization for Additive Manufacturing. Adv Mater Process 2013, 171(3):23-27.
  19. Kockelmann W, Frei G, Lehmann EH, Vontobel P, Santisteban JR: Energy-selective neutron transmission imaging at a pulsed source. Nucl Instrum Meth A 2007, 578(2):421-434.
  20. Kockelmann W, Santisteban JR, Vontobel P, Frei G, Lehmann EH: Energy-Selective Neutron Radiography at the Pulsed Spallation Source ISIS. Neutron Radiography 2008:217-226.
  21. Zhang SY, Godfrey E, Abbey B, Xu PG, Tomota Y, Liljedahl D, Zanellato O, Fitzpatrick M, Kelleher J, Siano S et al: Materials Structure and Strain Analysis Using Time-of-flight Neutron Diffraction. Lect Notes Eng Comp 2009:1412-1419.
  22. Santisteban JR: Time-of-flight neutron transmission of mosaic crystals. J Appl Crystallogr 2005, 38:934-944.
  23. Santisteban JR, Edwards L, Fizpatrick ME, Steuwer A, Withers PJ: Engineering applications of Braggedge neutron transmission. Appl Phys A 2002, 74:S1433-S1436.
  24. Santisteban JR, Edwards L, Steuwer A, Withers PJ: Time-of-flight neutron transmission diffraction. J Appl Crystallogr 2001, 34:289-297. 23
  25. Tremsin AS, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB, Bilheux HZ, Molaison JJ, Tulk CA, Crow L, Cooper RG et al: Transmission Bragg edge spectroscopy measurements at ORNL Spallation Neutron Source. In: J Phys Conf Ser. vol. 251; 2010: 012069.
  26. Dehoff RR KM, Sames WJ, Bilheux H, Tremsin AS, Lowe LE, and Babu SS: Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Materials Science and Technology 2015. DOI 10.1179/1743284714Y.0000000734
Metrics
Usage Shares
Total Views
192 Page Views
Total Shares
0 Tweets
192
0 PDF Downloads
0
0 Facebook Shares
Total Usage
192