Article Article
Outlier Analysis and Artificial Neural Network for the Noncontact Nondestructive Evaluation of Immersed Plates

We present an experimental study where guided ultrasonic waves were used for the noncontact nondestructive evaluation of an aluminum plate immersed in water. Broadband leaky Lamb waves were generated using a pulsed laser and were detected with an array of immersion transducers arranged in a semicircle. The signals were processed to extract some features from the time, frequency, and joint time-frequency domains. These features were then fed to an unsupervised learning algorithm based on the outlier analysis to detect the presence of damage, and to a supervised learning algorithm based on artificial neural networks to classify the types of defect. We found that the hybrid laser-immersion transducers system and both learning algorithms enable the detection of the defects and their classification with good success rate.

References
  1. P. Rizzo. Adv. Sci. Tech. 83:208 (2013).
  2. J. D. Achenbach. Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973).
  3. D. N. Alleyne and P. Cawley. J. Nondestruct. Eval. 15:11 (1996).
  4. J. L. Rose. Ultrasonic Waves in Solid Media. Cambridge University Press, NY (2004).
  5. T. Kundu. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2003).
  6. P. Rizzo and F. Lanza di Scalea. Progress in Smart Materials and Structures Research. P. L. Reece, ed., Nova Science Publishers, Hauppauge, NY, pp 227–290. (2007).
  7. W. B. Na and T. Kundu. J. Press. Vess.-T. ASME 124:196 (2002).
  8. R. Mijarez, P. Gaydecki, and M. Burdekin. Smart Mater. Struct. 16:1857 (2007).
  9. J. Bingham, M. Hinders, and A. Friedman. Ultrasonics 49:706 (2009).
  10. Guided Ultrasonics Ltd. (2013). Retrieved from http://www.guided-ultrasonics.com (Accessed June 10, 2015).
  11. J. N. Sharma and V. Pathania. J. Sound Vib. 268:897 (2003).
  12. J. N. Sharma and V. Pathania. J. Therm. Stresses 26:149 (2003).
  13. S. Sharma and A. Mukherjee. Struct. Contr. Health Monit. 22:19–35 (2015).
  14. S. Sharma and A. Mukherjee. J. Test. .Eval. 43 (2014). Available at http://www.astm.org
  15. J. R. Lee, J. K. Jang, and C. W. Kong. Shock Vib. Article ID 895693 (2014).
  16. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA (1999).
  17. F. Lanza di Scalea, P. Rizzo, and A. Marzani. J. Acoust. Soc. Am. 115:146 (2004).
  18. M. Sale, P. Rizzo, and A. Marzani. Mech. Syst. Signal Pr. 25:2241 (2011).
  19. P. Rizzo, I. Bartoli, A. Marzani, and F. Lanza di Scalea. J. Press. Vess.-T. ASME 127:294 (2005).
  20. P. Rizzo, E. Sorrivi, F. Lanza di Scalea, and E. Viola. J. Sound Vib. 307:52 (2007).
  21. P. Rizzo, M. Cammarata, D. Dutta, H. Sohn, and K. Harries. Smart Mater. Struct. 18:1 (2009).
  22. P. Rizzo and F. Lanza di Scalea. Smart Struct. Syst. 2:253 (2006).
  23. E. Pistone, K. Li, and P. Rizzo. Struct. Health Monit. 12:549 (2013).
  24. A. Bagheri, E. Pistone, and P. Rizzo. Res. Nondestruct. Eval. 5:63 (2014).
  25. S. E. Burrows, B. Dutton, and S. Dixon. IEEE T. Ultrason. Ferr. 59:82 (2012).
  26. J. N. Caron, G. P. DiComo, and S. Nikitin. Opt. Lett. 37:830 (2012).
  27. P. Rizzo and F. Lanzadi Scalea. Exp. Mech. 44:407 (2004).
  28. J. P. Monchalin. Progress towards the Application of Laser-Ultrasonics in Industry. Plenum Press, New York, pp. 495–506 (1993).
  29. B. Xu, J. Feng, G. Xu, J Wang, H. Sun, and G. Cao. Appl. Phys. A-Mater. 91:173 (2008).
  30. S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer. J. Appl. Phys. 26:329 (1993).
  31. J. D. Achenbach. Int. J. Solids Struct. 37:13 (2000).
  32. J. P. Monchalin. IEEE T. Ultrason. Ferr. 33:485 (1986).
  33. C. B. Scruby and L. E. Drain. Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol, New York (1990).
  34. S. C. Wooh and Q. Zhou. J. Appl. Phys. 89:3469 (2001).
  35. S. C. Wooh and Q. Zhou. J. Appl. Phys. 89:3478 (2001).
  36. J. F. Ready. Effects of High Power Laser Radiation. Academic Press Inc. (1971).
  37. J. F. Ready. J. Appl. Phys. 36:4400 (1975).
  38. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki. J. Appl. Phys. 82:2826 (1997).
  39. L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki. J. Appl. Phys. 85:7552 (1999).
  40. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell. Prog. Quant. Electron. 21:155 (1997).
  41. A. Vogel, S. Busch, and U. Parlitz. J. Acoust. Soc. Am. 100:148 (1996).
  42. D.C. Emmony. Infrared Phys. Techn. 25:133 (1985).
  43. J. Noack and A. Vogel. IEEE J. Quantum Elect. 35:1156 (1999).
  44. G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter. Chem. Phys. Lett. 471:244 (2009).
  45. G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter. World Acad. Sci. Eng. Technol. 31:25 (2009).
  46. C. E. Bell and J.A. Landt. Appl. Phys. Lett. 10:46 (1967).
  47. F. B. Cegla, P. Cawley, and M. J. S. Lowe. J. Acoust. Soc. Am. 117:1098 (2005).
  48. D. Chetwynd, J. A. Rongong, S. G. Pierce, and K. Worden. Fatigue Fract. Eng M. 31:629 (2008).
  49. K. Worden, G. Manson, and N. R. J. Fieller. J. Sound Vib. 229:647 (2000).
  50. K. Worden, S. G. Pierce, G. Manson, W. R. Philp, W. J. Staszewski, and B. Culshaw. Int. J. Syst. Sci. 31:1397 (2000).
  51. M. T. Hagan, and M. Menhaj. IEEE T. Neural Network 5:989 (1994).
  52. K. Worden, C. R. Farrar, G. Manson, and G. Park. P. Roy. Soc. A-Math. Phy. 463:1639 (2007).
  53. C. Grosse, H. Reinhardt, and T. Dahm. NDT E Int. 30(4):223 (1997).
  54. T. P. Philippidis, and D. G. Aggelis. Cem. Concr. Res. 33:525 (2003).
Metrics
Usage Shares
Total Views
80 Page Views
Total Shares
0 Tweets
80
0 PDF Downloads
0
0 Facebook Shares
Total Usage
80