Noncontact Evaluation of Acoustic Nonlinearity of a Laser-Generated Surface Wave in a Plastically Deformed Aluminum Alloy

A noncontact method to evaluate the acoustic nonlinearity of surface waves in a plastically deformed aluminum alloy is proposed. Line-arrayed laser beams modulated with slit masks were used for the generation of narrowband surface waves. A laser-ultrasonic detector using a two-wave mixing (TWM) approach was also employed to detect the surface waves. The specimens were deformed by a stroke-controlled tensile tester so as to generate various degrees of tensile deformation. The experimental results showed that the acoustic nonlinearity of the laser-generated surface waves increased according to the level of tensile deformation. This tendency was in good agreement with our previous results obtained using a contact piezoelectric (PZT)-transducer as the receiver. These results imply that our noncontact technique is suitable for the evaluation of acoustic nonlinearity and can be applied to practical damage assessment.

  1. K. Y. Jhang. International Journal of Precision Engineering and Manufacturing 10:123–135 (2009).
  2. J. Herrmann, J. Y. Kim, L. J. Jacobs, J. Qu, J. W. Littles, and M. F. Savage. Journal of Applied Physics 99:124913 (2006).
  3. V. V. S. J. Rao, E. Kannan, R. V. Prakash, and K. Balasubramaniam. Journal of Applied Physics 104:123508 (2008).
  4. S. V.Walker, J. Y. Kim, J. Qu, and L. J. Jacobs. NDT&E International 48:10–15 (2012).
  5. K. Y. Jhang, J. I. Lee, and T. H. Lee. Materials Transactions 53:303–307 (2012).
  6. S. H. Choi and K. Y. Jhang. NDT&E International 57:1–6 (2013).
  7. S. H. Choi, T. H. Nam, K. Y. Jhang, and C. S. Kim. Journal of the Korean Physics Society 60:26–30 (2012).
  8. H. J. Jeong and M. C. Park. Research in Nondestructive Evaluation 16:1–14 (2005).
  9. S. Kenderian, D. Cerniglia, B. B. Djordjevic, and R. E. Green. Research in Nondestructive Evaluation 16:195–207 (2005).
  10. C. B. Scruby and L. E. Drain. Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol (1990).
  11. J. Li, L. Dong, C. Ni, Z. Shen, and H. Zhang. Chinese Optics Letters 10:111403 (2012).
  12. D. Dhital and J. R. Lee. Experimental Mechanics 52:1111–1122 (2012).
  13. C. Ni, L. Dong, Z. Shen, and J. Lu. Optics&Laser Technology 43:1391–1397 (2011).
  14. S. K. Park, S. H. Baik, H. K. Cha, Y. M. Cheong, and Y. J. Kang. Journal of the Korean Physics Society 56:333–337 (2010).
  15. A. Moura, A. M. Lomonosov, and P Hess. Journal of Applied Physics 103:084911 (2008).
  16. C. S. Kim and K. Y. Jhang. Chinese Physics Letters 29:120701 (2012).
  17. B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer. Applied Physics Letters 69:3782–3784 (1996). 22 S. CHOI ET AL.
  18. E. F. Lafond, P. H. Brodeur, J. P. Gerhardstein, C. C. Habeger, and K. L. Telschow. Ultrasonics 40:1019–1023 (2002).
  19. C. H. Ho, J. Y. Lee, H. C. Shih, J. H. Shaw, and Y. H. Liu. Key Engineering Materials 270–273:359–363 (2004).
  20. A.Hikata and C. Elbaum. Physical Preview 144:469–477 (1966).
Usage Shares
Total Views
12 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage