Article Article
Grain Size Measurement of Copper Spot Welding Caps Via Ultrasonic Attenuation and Scattering Experiments

During ultrasonic testing of resistance spot welds in real time, the probe sends the sound waves through the thickness of the copper electrode cap into the materials being welded. Characteristics of the reflected waves from the weld interfaces allow a reliable decision to be made on the quality of the joint. Transmission of high frequency sound waves through the relatively thick copper welding cap cause the signal to be greatly attenuated due to grain scattering. For this reason, close monitoring of the copper cap properties prior to installation is essential for adequate performance. Finding copper alloys with a small average grain size is essential in order to minimize the attenuating effects. The conducted backscatter and attenuation experiments indicate correlation between the ultrasonically measured parameters and the optically found copper grain size. This correlation suggests that the attenuation or backscatter technique could be used alone in order to validate the proper copper alloy to be used in spot weld probes. Using nondestructive testing techniques for this purpose greatly reduces the time and cost involved compared to optical techniques.

References
  1. E. P. Papadakis. In Physical Acoustics. W. P. Mason (Ed.). Academic Press, New York (1968).
  2. L. G. Merkulov. Sov. J. Tech. Phys. 26:59–69 (1956).
  3. A. B. Bhatia. J. Acoust. Soc. Am. 31:16–23 (1959).
  4. R. B. Thompson and T. A. Gray. J. Acoust. Soc. Am. 74:1279–1290 (1983).
  5. L.W. Schmerr. Fundamentals of Ultrasonic Nondestructive Evaluation: AModeling Approach. Plenum Press, New York (1998).
  6. J. H. Rose. In Review of Progress in Quantitative Nondestructive Evaluation. D. O. Thompson and D. E. Chimenti (Eds.). Plenum Press, New York (1992).
  7. F. J. Margetan, T. A. Gray, and R. B. Thompson. In Review of Progress in Quantitative Nondestructive Evaluation. D. O. Thompson and D. E. Chimenti (Eds.). Plenum Press, New York (1991).
  8. R. B. Thompson, F. J. Margetan, P. Haldipur, L. Yu, A. Li, P. Panetta, and H. Wasan. Wave Motion 45:655–674 (2008).
  9. J. A. Turner. J. Acoust. Soc. Am. 106:541–552 (1999).
  10. L. Yang and J. A. Turner. J. Acoust. Soc. Am. 116:3319–3327 (2004).
  11. L. Yang and J. A. Turner. J. Acoust. Soc. Am. 121:50–59 (2007).
  12. G. Ghoshal, J. A. Turner, and R. L. Weaver. J. Acoust. Soc. Am. 122:2009–2021 (2007).
  13. R. Gr. Maev. Advances in Acoustic Microscopy and High Resolution Ultrasonic Imaging: From Principles to New Applications. Wiley-VCH, Germany (2013).
  14. A. Ouellette, A. C. Karloff, W. Perez-Regalado, A. M. Chertov, R. Gr. Maev, and P. Lichaa. Materials Evaluation 71(7) (2013).
  15. R. Gr. Maev and A. M. Chertov. U.S. Patent No. 8,381,591, February 26, 2013.
  16. G. Ghoshal and J. A. Turner. J. Acoust. Soc. Am. 128:3449–3458 (2010).
  17. P. Hu, C. M. Kube, L. W. Koester, and J. A. Turner. J. Acoust. Soc. Am. 134:982–990 (2013).
  18. R. B. Thompson and E. F. Lopes. J. Nondestruct. Eval. 4:107–123 (1984).
  19. F. E. Stanke and G. S. Kino. J. Acoust. Soc. Am. 75:665–681 (1984).
  20. R. L. Weaver. J. Mech. Phys. Solids 38:55–86 (1990).
  21. P. H. Rogers and A. L. Van Buren. J. Acoust. Soc. Am. 55:724–728 (1974).
  22. J. Wu. J. Acoust. Soc. Am. 99:129–134 (1996).
  23. J. Saniie and N. M. Bilgutay. J. Acoust. Soc. Am. 80:1816–1824 (1986).
  24. T. Stepinski and P. Wu. In The Ninth International Symposium on Nondestructive Characterization of Materials. R. E. Green (Ed.). AIP Publishing, Melville, NY (1999).
  25. H. Du and J. A. Turner. Ultrasonics 54:882–887 (2014).
  26. O. I. Lobkis, L. Yang, J. Li, and S. I. Rokhlin. Ultrasonics 52:694–705 (2012).
  27. J. Li, L. Yang, and S. I. Rokhlin. Ultrasonics 54:1789–1803 (2014).
  28. L. Yang, O. I. Lobkis, and S. I. Rokhlin. Ultrasonics 51:697–708 (2011).
  29. L. Yang, O. I. Lobkis, and S. I. Rokhlin. Ultrasonics 51:303–309 (2011).
  30. L. Yang, O. I. Lobkis, and S. I. Rokhlin. Wave Motion 49:544–560 (2012).
  31. L. Yang, J. Li, and S. I. Rokhlin. Wave Motion 50:1283–1302 (2013).
  32. P. Hu and J. A. Turner. J. Acoust. Soc. Am. 137:321–334 (2015).
Metrics
Usage Shares
Total Views
187 Page Views
Total Shares
0 Tweets
187
0 PDF Downloads
0
0 Facebook Shares
Total Usage
187