Article Article
Estimation of the Two-Dimensional Homogenous Dielectric Scatterer in a Slab Medium Using Particle Swarm Optimization and Asynchronous Particle Swarm Optimization

A microwave imaging technique based on particle swarm optimization (PSO) and asynchronous particle swarm optimization (APSO) are proposed for the electromagnetic inverse scattering. In this article, the finite-difference time-domain (FDTD) method is employed for the analysis of the forward scattering part, while PSO and/or APSO schemes (combining with FDTD) are applied to tackle the inverse scattering part. These two schemes aim for the simultaneous reconstruction of the location, shape, and permittivity of the dielectric scatterer in a slab medium. The reconstruction is based on the minimization of a cost functional, which evaluates the difference between measured and estimated values of the electric field. These two schemes are tested by several numerical examples, and the numerical results indicate that APSO outperforms PSO in terms of reconstruction accuracy and convergence speed. Both techniques have been tested in the case of simulated measurements contaminated by additive white Gaussian noise.

References
  1. D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Berlin, Heidelberg: Springer-Verlag (1998).
  2. G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa. IEEE Transaction on Antennas and Propagation 60:971–982 (2012).
  3. C. H. Huang, Y. F. Chen, and C. C. Chiu. Journal of Electromagnetic Waves and Applications 21: 145–159 (2007).
  4. G. Franceschini, M. Donelli, R. Azaro, and A. Massa. IEEE Transactions on Geoscience and Remote Sensing 44:3527–3539 (2006).
  5. W. Chien, C. H. Sun, and C. C. Chiu. International Journal of Imaging Systems and Technology 19:299–305 (2009).
  6. I. T. Rekanos, T. V. Yioultsis, and C. S. Hilas. IEEE Transactions on Geoscience and Remote Sensing 42:1456–1461 (2004).
  7. C. H. Sun, C. L. Liu, K. C. Chen, C. C. Chiu, C. L. Li, and C. C. Tasi. Electromagnetics 28:389–400 (2008).
  8. A. G. Tijhuis, K. Belkebir, A. C. S. Litman, and S. P. de Hon. IEEE Transactions on Geoscience and Remote Sensing 39:1316–1330 (2001).
  9. S. He, P. Fuks, and G. W. Larson. IEEE Transaction on Antennas and Propagation 44:1277–1282 (1996).
  10. M. Gustafsson and S. He. Radio Sci. 35:525–536 (2000).
  11. E. Abenius and B. Strand International Journal for Numerical Methods in Engineering 68:650–673 (2006).
  12. C. H. Sun, C. L. Li, C. C. Chiu, and C. H. Huang. Research in Nondestructive Evaluation 22:1–15 (2011).
  13. C. H. Sun, C. C. Chiu, C. L. Li, and C. H. Huang. Electromagnetics 30:309–323 (2010).
  14. C. H. Sun, C. C. Chiu, W. Chien, and C. L. Li. Journal of Electronic Imaging 19:1–9 (2010).
  15. C. H. Chen, C. C. Chiu, C. H. Sun, and W. L. Chang. Journal of Applied Remote Sensing 5:1–15 (2011).
  16. D. W. Winters, E. J. Bond, B. D. V. Veen, and S. C. Hagness. IEEE Transaction on Antennas and Propagation 54:3517–3528 (2006).
  17. T. G. Papadopoulos and I. T. Rekanos. IEEE Transactions on Antennas and Propagation 60:1197–1202 (2012).
  18. I. T. Rekanos. IEEE Transactions on Geoscience and Remote Sensing 46:1967–1974 (2008).
  19. M. Donelli and A. Massa. IEEE Trans. Microw. Theory Tech. 53:1761–1776 (2005).
  20. M. Donelli, G. Franceschini, A. Martini, and A. Massa. IEEE Trans. Geosci. Remote Sens. 44:298–312 (2006).
  21. W. Chien and C. C. Chiu. IEEE Transactions on Antennas and Propagation 53:3128–3134 (2005).
  22. A. Semnani, M. Kamyab, and I. T. Rekanos. IEEE Geoscience and Remote Sensing Letters 6:671–675 (2009).
  23. C. C. Chiu and W. C. Hsiao. Waves in Random and Complex Media 21:485–500 (2011).
  24. I. T. Rekanos, and A. Trochidis. Acta Acustica United with Acustica 93:917–923 (2007).
  25. C. L. Li, C. C. Chiu, and C. H. Huang. Journal of Testing and Evaluation 38:481–487 (2011).
  26. C. H. Sun, C. C. Chiu, and C. L. Li. Progress in Electromagnetic Research M. 14:85–100 (2010).
  27. C. C. Chiu, C. H. Sun, C. L. Li, and C. H. Huang. IEEE Transactions on Geoscience and Remote Sensing 51:2302–2315 (2013).
  28. M. W. Chevalier, R. J. Luebbers, and V. P. Cable. IEEE Trans. Antennas and Propagation 45:411–421 (1997).
  29. C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York (1978).
  30. K. Yee. IEEE Transactions on Antennas and Propagation 14:302–307 (1966).
  31. C. L. Li, C. W. Liu, and S. H. Chen. Microwave and Optical Technology Letters 37:380–383 (2003).
  32. A. Semnani, and M. Kamyab. Progress in Electromagnetics Research 81:73–97 (2008).
  33. J. Kennedy and R. C. Eberhart. Proceedings of the IEEE International Conference on Neural Network 4:1942–1948 (1995).
  34. M. Clerc. Proceedings of Congress on Evolutionary Computation, Washington, D.C., pp. 1951–1957 (1999).
  35. T. Huang and A. S. Mohan. IEEE Antennas and Wireless Propagation Letters 4:112–117 (2005).
  36. W. Chien and C. C. Chiu. IEICE Trans. Electron E88-C:2223–2228 (2005).
  37. W. Chien and C. C. Chiu. Applied Computational Electromagnetics Society Journal 20:136–143 (2005).
  38. A. Qing. Differential Evolution: Fundamentals and Applications in Electrical Engineering. John Wiley & Sons, Inc., New York. (2009).
  39. A. Carlisle and G. Doizier. An off- the-shelf PSO, Proceedings of the Particle Swarm Optimization Workshop, 1:1–6 (2001).
  40. J. Robinson and Y. Rahmat-Samii. IEEE Trans. Antennas Propag. 52:397–407 (2004).
Metrics
Usage Shares
Total Views
35 Page Views
Total Shares
0 Tweets
35
0 PDF Downloads
0
0 Facebook Shares
Total Usage
35