Article Article
Corrosion Imaging and Thickness Determination Using Micro-Curie Radiation Sources Based on Gamma-Ray Backscattering: Experiments and MCNP Simulation

Gamma radiography is used to monitor the corrosion of pipelines in remote locations; usually high radioactivity (1011–1012 Bq) is used. The technique is also not useful for imaging pipes with thick walls or large vessel walls. In this work, Compton backscattered radiation was used for the wall-thickness determination and corrosion imaging of pipe and flat materials using extremely-low-activity sources with radioactivities on the order of 104–105 Bq. A two-dimensional scanning system was designed to scan object surfaces, and the signals from a NaI(Tl) scintillation detector were fed into a computer for image construction using the LabView program. Thicknesses greater than 1 cm and 1.5 cm could be measured for Fe and Al and for polyvinyl chloride (PVC) and poly methyl methacrylate (PMMA), respectively. It was also possible to detect changes of less than 1 mm in depression depth for depressions measuring 3 mm in diameter. One- and two-dimensional images artificial defects on a pipe surface were successfully constructed.

  1. B. Baši´c, A. Beganovi´c, D. Samek, A. Skopljak-Beganovi´c, andM. Gazdi´c-Šanti´c. Radiat. Prot. Dosim. 139:400–402 (2010).
  2. A. Koczynski, A. Chec, D. Lach, and M. Dabek. Radiat. Prot. Dosim. 96:61–62 (2001).
  3. G. Morkunas, B. Griciene, and D. Jankauskiene. Radiat. Prot. Dosim. 96:57–59 (2001).
  4. W. E. Muhogora, E. Byorushengo, U. S. Lema, G. Mboya, J. B. Ngatunga, S. Sawe, N. M. Katsidzita, S. Mikidadi, F. Chuma, A. Marco, and M. I. Hamed. Radiat. Prot. Dosim. 153:403–410 (2013).
  5. M. R. Deevband, M. Ghiassi-Nejad, S. Borhan-Azad, and M. B. Tavakoli. Radiat. Prot. Dosim. 109:253–256 (2004).
  6. J. K. Brown and J. R. McNill. Health Phys. 21:519–522 (1971).
  7. IAEA Safety Sears no. 7 Lessons Learned from Accidents in Industrial Radiography. International Atomic Energy Agency, Vienna (1998).
  8. F. A. Mianji, M. R. Kardan, and N. Rastkhah. Radiat. Prot. Dosim. 118:375–377 (2006).
  9. A. V. Sevan’kaev, D. C. Lloyd, A. A. Edwards, J. E. Moquet, V. Yu. Nugis, G. M. Mikhailova, O. I. Potetnya, I. K. Khvostunov, A. K. Guskova, A. E. Baranov, and N. M. Nadejina. Radiat. Prot. Dosim. 102:201–206 (2002).
  10. IAEA. Safety Standards for Protecting People and the Environment. Radiation Safety in Industrial Radiography, Specific Safety Guide no. SSG-11. International Atomic Energy Agency, Vienna (2011).
  11. IAEA Safety Series no. 13. Radiation Protection and Safety in Industrial Radiography. International Atomic Energy Agency, Vienna (1999).
  12. NCRP report no. 61. Radiation Safety Training Criteria for Industrial Radiography. National Council on Radiation Protection and Measurements, Bethesda, MD (1978).
  13. M. Balasko, E. Svab, A. Kuba, Z. Kiss, L. Rodek, and A. Nagy. Nucl. Instrum. Meth. A 542:302–308 (2005).
  14. K. Edalati, N. Rastkhah, A. Kermani, M. Seiedi, and A. Movafeghi. Int. J. Pres. Ves. Pip. 83:736–741 (2006).
  15. IAEA TECDOC-1445. Development of Protocols for Corrosion and Deposits Evaluation in Pipes by Radiography. International Atomic Energy Agency, Vienna (2005).
  16. S. Abdul-Majid and A. Balamesh. 18thWorld Conference on Nondestructive Testing, 16–20, Durban, South Africa, (April, 2012).
  17. S. Abdul-Majid and A. Balamesh. Res. Nondestruct. Eval. 25:172–185 (2014).
  18. S. Abdul-Majid and Z. Tayyeb. 3rd Middle East Nondestructive Testing Conference and Exhibition, Bahrain, 173–181 (2005).
  19. A. Sharma, B. S. Sandhu, and A. Singh. Appl. Radiat. Isot. 68:2181–2188 (2010).
  20. Z. Asa’d, M. Asghar, and D. C. Imrie. Meas. Sci. Technol. 8:377–385 (1997).
  21. X. Xu, R. Gould, S. Khan, E. H. Klevans, and E. S. Kenney. Nucl. Instrum. Meth. A 353:334–337 (1994).
  22. S. Abdul-Majid and W. H. Abulfaraj. Arab. J. Sci. Eng. 13:385–394 (1988).
  23. G. Harding and E. Harding. Appl. Radiat. Isot. 68:993–1005 (2010).
  24. G. Harding. Radiat. Phys. Chem. 71:869–881 (2004).
  25. G. Harding. Radiat. Phys. Chem. 50:91–111 (1997).
  26. W. L. Dunn. Appl. Radiat. Isot. 61:1217–1225 (2004).
  27. V. E. Stepanov, O. P. Ivanov, A. N. Sudarkin, and L. I. Urutsoev. Nucl. Instrum. Meth. A 422:724–728 (1999).
  28. W. J. Baukus. 16th Security Symposium and Exhibition, Section V: Technology Forum Focus Group II, Transportation Security Technologies and Tools (June 28, 2000).
  29. S. S. Tang and M. A. Hussein. Appl. Radiat. Isot. 61:3–10 (2004).
  30. N. Shengli, Z. Jun, and H. Liuxing. Proceedings of the Second International Workshop on EGS, Tsukuba, Japan (2000).
  31. C.Driol, M. K. Nguyen, and T. T. Truong. Simul. Model. Pract. Th. 16:1067–1076 (2008).
  32. MCNP—X-5 Monte Carlo Team. A General Monte Carlo N-Particle Transport Code. Version 5 (2003).
Usage Shares
Total Views
104 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage