Advanced Fatigue Crack Detection Using Nonlinear Self-Sensing Impedance Technique for Automated NDE of Metallic Structures

This article reports the application of a nonlinear impedance technique under a lowfrequency vibration to detect contact-type structural defects such as fatigue cracks. If the contact-type damage is developed within the structure due to the low-frequency dynamic load, the vibration can cause a nonlinear fluctuation of the structural impedance because of the contact acoustic nonlinearity (CAN). This nonlinear effect can lead to amplitude modulation and phase modulation of the current flow. The nonlinear characteristics of the structural impedance can be extracted by observing the coupled electromechanical impedance of a piezoelectric active sensor and utilizing nonlinear wave modulation spectroscopy. Experimentally, a low-frequency vibration was applied to a notched coupon at a certain natural frequency by a shaker, so that a nonlinear fatigue crack can be artificially formed at the notch tip. Then, the nonlinear features are extracted based on a self-sensing impedance measurement from a host structure under a low-frequency vibration. The damage metric was established based on the nonlinear fluctuation of the impedance due to the CAN.

  1. D. E. Adams and C. R. Farrar. Struct. Health Monit. 1:185–201 (2002).
  2. A. C. Rutherford, G. Park, and C. R. Farrar. Mech. Syst. Signal Pr. 21:322–333 (2007).
  3. D. M. Donskoy and A. M. Sutin. 9:765–971 (1999).
  4. K. Van Den Abeele, P. A. Johnson, and A. M. Sutin. Res. Nondestruct. Eval. 12:17–30 (2000).
  5. D. M. Donskoy, A. M. Sutin, and A. E. Ekimov. NDT&E Int. 34:231–238 (2001).
  6. A. M. Sutin and P. A. Johnson. AIP Conf. Proc. 760:385–392 (2005).
  7. P. Duffour, M. Morbidini, and P. Cawley. J. Acoust. Soc. Am. 119:1463–1475 (2006).
  8. L. Straka, Y. Yagodzinskyy, M. Landa, and H. Häninen. NDT&E Int. 41:554–563 (2008).
  9. M. Meo and G. Zumpano. Compos. Struct. 71:469–474 (2005).
  10. M. Meo, U. Polimeno, and G. Zumpano. Appl. Compos. Mater. 15:115–26 (2008).
  11. F. Aymerich and W. Staszewski. Struct. Health Monit. 9:541–553 (2010).
  12. A. Zagrai, D. Donskoy, A. Chudnovsky, and E. Golovin. Res. Nondestruct. Eval. 19:104–128 (2008).
  13. I.Y. Solodov, N. Krohn, and G. Busse. Ultrasonics 40:621–625 (2002).
  14. S. Biwa, S. Nakajima, and N. Ohno. J. Appl. Mech. 71:508–515 (2004).
  15. J. Y. Kim, A. Baltazar, J. W. Hu, and S. I. Rokhlin. Int. J. Solids Struct. 43:6436–6452 (2006).
  16. J. Chen, D. Zhang, Y. Mao, and J. Cheng. Ultrasonics 44:e1355–1358 (2006).
  17. A. Masuda, J. Aoki, T.Shinagawa, D. Iba, and A. Sone. Smart Mater. Struct. 20: 025021, (2011).
  18. A. Baltazar, S.I. Rokhlin, and C. Pecorari. J. Mech. Phys. Solids 50:1397–1416 (2002).
  19. C. Pecorari. J. Acoust. Soc. Am. 113:3065–3072 (2003).
  20. S. Biwa, S. Nakajima, and N. Ohno. J. Appl. Mech. 71:508–515 (2004).
  21. V. Giurgiutiu, A. Zagrai, and J. J. Bao. Struct. Health Monit. 1:41–61 (2002).
  22. C. Lee and S. Park. Smart Mater. Struct. 20: 115002 (2011).
  23. C. Lee and S. Park. Adv. Struct. Eng. 15:919–927 (2012).
  24. J.-W. Kim, C. Lee, and S. Park. Res. Nondestruct. Eval. 24:183–196 (2012).
  25. J. E. Gibson. Nonlinear Automatic Control. McGraw-Hill, New York (1963).
  26. S. J. Lee., H. Sohn, and J. Hong. J. Nondestruct. Eval. 29:75–91 (2010).
  27. S.J. Lee and H. Sohn. Smart Mater. Struct. 15:1734–1746 (2006)
Usage Shares
Total Views
34 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage