Article Article
Towards the Design of Metamaterials with Enhanced Damage Sensitivity: Second Gradient Porous Materials

Numerous computational and conceptual difficulties are often encountered when conceiving techniques which are effective in detecting damage intensity, localization, and onset. Actually, also when the semi-inverse or the material characterization problems (which are commonly formulated in this context) can be recognized to be well posed, the numerical and computational obstacles which need to be overcome can render useless the conceived methodology. In the present paper we propose to change the paradigm used up to now when addressing the problem of damage assessment in engineering materials. In fact, we propose to conceive a metamaterial the properties of which make more expedite and effective the detection of cracks onset and damage evolution via the study of reflection and transmission of waves. More particularly, porous materials with underlying heterogeneous micro-structure may magnify the effects of reflection and transmission of waves at damaged sites depending on the considered boundary conditions. Materials of this type would make easier the structural health monitoring via nondestructive evaluation of local damage and would permit to detect incipient structural failure in a more efficient way. By analyzing the characteristic patterns of the reflection and transmission properties of surfaces where damage is concentrated, we show that, in the considered metamaterials, slow incident waves can be used to detect the onset and evolution of first gradient macroscopic damage (e), while fast incident waves can be used to reveal loss of contact at the microscopic level, i.e. to detect the onset of second gradient macroscopic damage (r ).

References
1. E. C. Aifantis. Gradient deformation models at nano, micro, and macro scales. Journal of Engineering Materials and Technology-Transactions of the ASME, 121(2):189–202 (April 1, 1999). 2. E. C. Aifantis. Update on a class of gradient theories. Mechanics of Materials 35:259–280 (2003). 3. J. J. Alibert, P. Seppecher, and F. dell’Isola. Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8:51–73 (2003). 4. S. Forest. Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV 8(PR4) (1998). 5. S. Bardenhagen and N. Triantafyllidis. Derivation of higher order gradient continuum theories in 2,3-d non-linear elasticity from periodic lattice models. Journal of the Mechanics and Physics of Solids 42:111–139 (1994). 122 A. MADEO ET AL. 6. V. A. Eremeyev. Acceleration waves in micropolar elastic media. Doklady Physics 50:204–206 (2005). 7. R. Sunyk and P. Steinmann. On higher gradients in continuum-atomistic modelling. International Journal of Solids and Structures 40:6877–6896 (2003). 8. N. Triantafyllidis and S. Bardenhagen. On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. Journal of Elasticity 33:259–293 (1993). 9. N. Auffray, F. dell’Isola, V. Eremeyev, A. Madeo, and G. Rosi. Analytical continuum mechanics a la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids, (2013). 10. F. dell’Isola, G. Sciarra, and S. Vidoli. Generalized Hooke’s law for isotropic second gradient materials. Royal Society of London Proceedings Series A 465:2177–2196 (2009). 11. F. dell’Isola and P. Seppecher. Edge Contact Forces and Quasi-Balanced Power. Meccanica 32:33–52 (1997). 12. S. Forest and E. C. Aifantis. Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. International Journal of Solids and Structures 47:3367–3376 (2010). 13. A. E. Green and R. S. Rivlin. Multipolar Continuum Mechanics. Archive for Rational Mechanics and Analysis 17:113–147 (1964). 14. N. Kirchner and P. Steinmann. A unifying treatise on variational principles for gradient and micromorphic continua. Philosophical Magazine 85:3875–3895 (2005). 15. G. A. Maugin and A. V. Metrikine. Mechanics of Generalized Continua. One hundred years after the Cosserat brothers. Selected papers from the EUROMECH colloqium 510 held in Paris, May 13–16 2009. Advances in Mechanics and Mathematics, f21 (2010). 16. R. A. Toupin. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis 11:385–414 (1962). 17. A. Aknine, B. Castagnede, and C. Depollier. Reflection/refraction of acoustic waves on an interface fluid/porous material. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-Mecanique Physique Chimie Astronomie 324:501–511 (1997). 18. F. dell’Isola, A. Madeo, and L. Placidi. Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92:52–71 (2011). 19. B. Gurevich and R. Ciz. Simple expressions for normal-incidence reflection coefficients from an interface between fluid-saturated porous materials. Geophysics 69:1372 (2004). 20. B. Gurevich and M. Schoenberg. Interface conditions for Biot’s equations of poroelasticity. The Journal of the Acoustical Society of America 105:2585–2589 (1999). 21. L. Placidi, G. Rosi, I. Giorgio, and A. Madeo. Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids, (2013). 22. G. Rosi, I. Giorgio, and V. A. Eremeyev. Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 93:914–927 (2013). 23. F. Collin, R. Chambon, and R. Charlier. A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. International Journal for Numerical Methods in Engineering 65:1749–1772 (2006). 24. F. dell’Isola, M. Guarascio, and K. Hutter. A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Archive of Applied Mechanics 70:323–337 (2000). 25. D. L. Johnson, J. Koplik, and R. Dashen. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics 176:379–402 (2006). 26. A. Madeo, F. dell’Isola, N. Ianiro, and G. Sciarra. A variational deduction of second gradient poroelasticity II: An application to the consolidation problem. Journal of Mechanics of Materials and Structures 3:607–625 (2008). METAMATERIALS WITH ENHANCED DAMAGE SENSITIVITY 123 27. G. Sciarra, F. dell’Isola, and O. Coussy. Second gradient poromechanics. International Journal of Solids and Structures 44:6607–6629 (2007). 28. G. Sciarra, F. dell’Isola, N. Ianiro, and A. Madeo. A variational deduction of second gradient poroelasticity part I: General theory. Journal of Mechanics of Materials and Structures 3:507– 526 (2008). 29. A. C. Eringen. Microcontinuum Field Theories, Springer Verlag, New York (1999). 30. I.-D. Ghiba, P. Neff, A. Madeo, L. Placidi, and G. Rosi. The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Mathematics and Mechanics of Solids (2013) DOI: 10.1177/1081286513516972. 31. R. D. Mindlin. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16:51–78 (1964). 32. P. Neff, I.-D. Ghiba, A. Madeo, L. Placidi, and G. Rosi. A unifying perspective: The relaxed linear micromorphic continuum. Continuum Mechanics and Thermodynamics (2013) DOI: 10.1007/s00161-013-0322-9. 33. O. Coussy. Poromechanics. John Wiley and Sons, West Sussex, England (2004). 34. O. Coussy and T. Bourbie. Propagation des ondes acoustiques dans les milieux poreux saturés. Revue De l’Institut Francais Du Pétrole 39:47–66 (1984). 35. F. dell’Isola, L. Rosa, and Cz. Wozniak. Dynamics of solids with micro periodic nonconnected fluid inclusions. Archive of Applied Mechanics 67:215–228 (1997). 36. G. E. Exadaktylos and I. Vardoulakis. Microstructure in linear elasticity and scale effects a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335:81– 109 (2001). 37. S. Quiligotti, G. A. Maugin, and F. dell’Isola. Wave motions in unbounded poroelastic solids infused with compressible fluids. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 53:1110–1138 (2002). 38. F. dell’Isola, A. Madeo, and P. Seppecher. Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. International Journal of Solids and Structures 46:3150– 3164 (2009). 39. A. I. M. Denneman, G. G. Drijkoningen, D. M. J. Smeulders, and K. Wapenaar. Reflection and transmission of waves at a fluid/porous-medium interface. Geophysics 67:282–291 (2002). 40. A. Madeo and S. L. Gavrilyuk. Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. European Journal of Mechanics A-Solids 29:897–910 (2010). 41. N. J. P. Rasolofosaon and O. Coussy. Propagation des ondes acoustiques dans les milieux poreux saturés effets d’interface (Premiére Partie). Revue De l’Institut Francais Du Pétrole 40:581–594 (1985). 42. J. German Rubino, C. L. Ravazzoli, and J. E. Santos. Reflection and transmission of waves in composite porous media: A quantification of energy conversions involving slow waves. Journal of The Acoustical Society Of America 120:2425–2436 (2006). 43. M. D. Sharma. Wave propagation across the boundary between two dissimilar poroelastic solids. Journal of Sound and Vibration 314:657–671 (2008). 44. M. D. Sharma. 3-D wave propagation in a general anisotropic poroelastic medium: reflection and refraction at an interface with fluid. Geophysical Journal International 157:947–958 (2004). 45. M. A. Biot. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low-frequency range. The Journal of the Acoustical Society of America 28:168 (1956). 46. M. A. Biot. Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. The Journal of the Acoustical Society of America 28:179–191 (1956). 47. M. A. Biot and I. Tolstoy. Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction. The Journal of the Acoustical Society of America 29:381 (1957). 48. G. Rosi, A. Madeo, and J. L. Guyader. Switch between fast and slow Biot compression waves induced by“second gradient microstructure” at material discontinuity surfaces in porous media. International Journal of Solids and Structures 50:1721–1746 (2013). 124 A. MADEO ET AL. 49. C. Pideri and P. Seppecher. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics 9:241–257 (1997). 50. S. Alessandroni, U. Andreaus, F. dell’Isola, and M. Porfiri. Piezo-ElectroMechanical (PEM) Kirchhoff-Love plates. European Journal Of Mechanics A-Solids 23:689–702 (2004). 51. S. Alessandroni, F. dell’Isola, and M. Porfiri. A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators. International Journal of Solids and Structures 39:5295–5324 (2002). 52. U. Andreaus, F. dell’Isola, and M. Porfiri. Piezoelectric passive distributed controllers for beam flexural vibrations. Journal of Vibration and Control 10:625–659 (2004). 53. F. dell’Isola and S. Vidoli. Continuum modelling of piezoelectromechanical truss beams: An application to vibration damping. Archive Of Applied Mechanics 68:1–19 (1998). 54. M. Porfiri, F. dell’Isola, and F. M. F. Mascioli. Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. International Journal of Circuit Theory and Applications 32:167–198 (2004). 55. G. Rosi, R. Paccapeli, F. Ollivier, and J. Pouget. Optimization of piezoelectric patches positioning for passive sound radiation control of plates. Journal of Vibration and Control (2012) DOI: 10.1177/1077546312437236. 56. G. Rosi, J. Pouget, and F. dell’Isola. Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. European Journal of Mechanics ASolids 29:859–870 (2010). 57. U. Andreaus, P. Casini, and F. Vestroni. Non-linear dynamics of a cracked cantilever beam under harmonic excitation. International Journal of Non-Linear Mechanics 42:566–575 (2007). 58. G. M. Owolabi, A. S. J. Swamidas, and R. Seshadri. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. Journal of Sound and Vibration, 265:1–22 (2003). 59. P. F. Rizos, N. Aspragathos, and A. D. Dimarogonas. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal of Sound and Vibration, 138:381–388 (1990). 60. U. Andreaus, B. Chiaia, and L. Placidi. Soft-impact dynamics of deformable bodies. Continuum Mechanics and Thermodynamics 23:375–398 (2013).
Metrics
Usage Shares
Total Views
47 Page Views
Total Shares
0 Tweets
47
0 PDF Downloads
0
0 Facebook Shares
Total Usage
47