Numerous computational and conceptual difficulties are often encountered when
conceiving techniques which are effective in detecting damage intensity, localization,
and onset. Actually, also when the semi-inverse or the material characterization
problems (which are commonly formulated in this context) can be recognized to be
well posed, the numerical and computational obstacles which need to be overcome
can render useless the conceived methodology. In the present paper we propose
to change the paradigm used up to now when addressing the problem of damage
assessment in engineering materials. In fact, we propose to conceive a metamaterial
the properties of which make more expedite and effective the detection of cracks
onset and damage evolution via the study of reflection and transmission of waves.
More particularly, porous materials with underlying heterogeneous micro-structure may
magnify the effects of reflection and transmission of waves at damaged sites depending
on the considered boundary conditions. Materials of this type would make easier the
structural health monitoring via nondestructive evaluation of local damage and would
permit to detect incipient structural failure in a more efficient way. By analyzing the
characteristic patterns of the reflection and transmission properties of surfaces where
damage is concentrated, we show that, in the considered metamaterials, slow incident
waves can be used to detect the onset and evolution of first gradient macroscopic
damage (e), while fast incident waves can be used to reveal loss of contact
at the microscopic level, i.e. to detect the onset of second gradient macroscopic
damage (r ).
1. E. C. Aifantis. Gradient deformation models at nano, micro, and macro scales. Journal of
Engineering Materials and Technology-Transactions of the ASME, 121(2):189–202 (April 1, 1999).
2. E. C. Aifantis. Update on a class of gradient theories. Mechanics of Materials 35:259–280
(2003).
3. J. J. Alibert, P. Seppecher, and F. dell’Isola. Truss modular beams with deformation energy
depending on higher displacement gradients. Math. Mech. Solids 8:51–73 (2003).
4. S. Forest. Mechanics of generalized continua: construction by homogenizaton.
Le Journal de Physique IV 8(PR4) (1998).
5. S. Bardenhagen and N. Triantafyllidis. Derivation of higher order gradient continuum theories in
2,3-d non-linear elasticity from periodic lattice models. Journal of the Mechanics and Physics
of Solids 42:111–139 (1994).
122 A. MADEO ET AL.
6. V. A. Eremeyev. Acceleration waves in micropolar elastic media. Doklady Physics 50:204–206
(2005).
7. R. Sunyk and P. Steinmann. On higher gradients in continuum-atomistic modelling. International
Journal of Solids and Structures 40:6877–6896 (2003).
8. N. Triantafyllidis and S. Bardenhagen. On higher order gradient continuum theories in 1-D
nonlinear elasticity. Derivation from and comparison to the corresponding discrete models.
Journal of Elasticity 33:259–293 (1993).
9. N. Auffray, F. dell’Isola, V. Eremeyev, A. Madeo, and G. Rosi. Analytical continuum mechanics
a la Hamilton-Piola least action principle for second gradient continua and capillary fluids.
Math. Mech. Solids, (2013).
10. F. dell’Isola, G. Sciarra, and S. Vidoli. Generalized Hooke’s law for isotropic second gradient
materials. Royal Society of London Proceedings Series A 465:2177–2196 (2009).
11. F. dell’Isola and P. Seppecher. Edge Contact Forces and Quasi-Balanced Power. Meccanica
32:33–52 (1997).
12. S. Forest and E. C. Aifantis. Some links between recent gradient thermo-elasto-plasticity theories
and the thermomechanics of generalized continua. International Journal of Solids and Structures
47:3367–3376 (2010).
13. A. E. Green and R. S. Rivlin. Multipolar Continuum Mechanics. Archive for Rational Mechanics
and Analysis 17:113–147 (1964).
14. N. Kirchner and P. Steinmann. A unifying treatise on variational principles for gradient and
micromorphic continua. Philosophical Magazine 85:3875–3895 (2005).
15. G. A. Maugin and A. V. Metrikine. Mechanics of Generalized Continua. One hundred years
after the Cosserat brothers. Selected papers from the EUROMECH colloqium 510 held in Paris,
May 13–16 2009. Advances in Mechanics and Mathematics, f21 (2010).
16. R. A. Toupin. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis
11:385–414 (1962).
17. A. Aknine, B. Castagnede, and C. Depollier. Reflection/refraction of acoustic waves on an
interface fluid/porous material. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule
B-Mecanique Physique Chimie Astronomie 324:501–511 (1997).
18. F. dell’Isola, A. Madeo, and L. Placidi. Linear plane wave propagation and normal transmission
and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM – Journal
of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
92:52–71 (2011).
19. B. Gurevich and R. Ciz. Simple expressions for normal-incidence reflection coefficients from
an interface between fluid-saturated porous materials. Geophysics 69:1372 (2004).
20. B. Gurevich and M. Schoenberg. Interface conditions for Biot’s equations of poroelasticity. The
Journal of the Acoustical Society of America 105:2585–2589 (1999).
21. L. Placidi, G. Rosi, I. Giorgio, and A. Madeo. Reflection and transmission of plane waves at
surfaces carrying material properties and embedded in second-gradient materials. Math. Mech.
Solids, (2013).
22. G. Rosi, I. Giorgio, and V. A. Eremeyev. Propagation of linear compression waves through
plane interfacial layers and mass adsorption in second gradient fluids. ZAMM – Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
93:914–927 (2013).
23. F. Collin, R. Chambon, and R. Charlier. A finite element method for poro mechanical
modelling of geotechnical problems using local second gradient models. International Journal
for Numerical Methods in Engineering 65:1749–1772 (2006).
24. F. dell’Isola, M. Guarascio, and K. Hutter. A variational approach for the deformation of a
saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle.
Archive of Applied Mechanics 70:323–337 (2000).
25. D. L. Johnson, J. Koplik, and R. Dashen. Theory of dynamic permeability and tortuosity in
fluid-saturated porous media. Journal of Fluid Mechanics 176:379–402 (2006).
26. A. Madeo, F. dell’Isola, N. Ianiro, and G. Sciarra. A variational deduction of second gradient
poroelasticity II: An application to the consolidation problem. Journal of Mechanics of Materials
and Structures 3:607–625 (2008).
METAMATERIALS WITH ENHANCED DAMAGE SENSITIVITY 123
27. G. Sciarra, F. dell’Isola, and O. Coussy. Second gradient poromechanics. International Journal
of Solids and Structures 44:6607–6629 (2007).
28. G. Sciarra, F. dell’Isola, N. Ianiro, and A. Madeo. A variational deduction of second gradient
poroelasticity part I: General theory. Journal of Mechanics of Materials and Structures 3:507–
526 (2008).
29. A. C. Eringen. Microcontinuum Field Theories, Springer Verlag, New York (1999).
30. I.-D. Ghiba, P. Neff, A. Madeo, L. Placidi, and G. Rosi. The relaxed linear micromorphic
continuum: existence, uniqueness and continuous dependence in dynamics. Mathematics and
Mechanics of Solids (2013) DOI: 10.1177/1081286513516972.
31. R. D. Mindlin. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis,
16:51–78 (1964).
32. P. Neff, I.-D. Ghiba, A. Madeo, L. Placidi, and G. Rosi. A unifying perspective: The relaxed
linear micromorphic continuum. Continuum Mechanics and Thermodynamics (2013) DOI:
10.1007/s00161-013-0322-9.
33. O. Coussy. Poromechanics. John Wiley and Sons, West Sussex, England (2004).
34. O. Coussy and T. Bourbie. Propagation des ondes acoustiques dans les milieux poreux saturés.
Revue De l’Institut Francais Du Pétrole 39:47–66 (1984).
35. F. dell’Isola, L. Rosa, and Cz. Wozniak. Dynamics of solids with micro periodic nonconnected
fluid inclusions. Archive of Applied Mechanics 67:215–228 (1997).
36. G. E. Exadaktylos and I. Vardoulakis. Microstructure in linear elasticity and scale effects a
reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335:81–
109 (2001).
37. S. Quiligotti, G. A. Maugin, and F. dell’Isola. Wave motions in unbounded poroelastic solids
infused with compressible fluids. Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
53:1110–1138 (2002).
38. F. dell’Isola, A. Madeo, and P. Seppecher. Boundary conditions at fluid-permeable interfaces in
porous media: A variational approach. International Journal of Solids and Structures 46:3150–
3164 (2009).
39. A. I. M. Denneman, G. G. Drijkoningen, D. M. J. Smeulders, and K. Wapenaar. Reflection
and transmission of waves at a fluid/porous-medium interface. Geophysics 67:282–291 (2002).
40. A. Madeo and S. L. Gavrilyuk. Propagation of acoustic waves in porous media and their
reflection and transmission at a pure-fluid/porous-medium permeable interface. European Journal
of Mechanics A-Solids 29:897–910 (2010).
41. N. J. P. Rasolofosaon and O. Coussy. Propagation des ondes acoustiques dans les milieux
poreux saturés effets d’interface (Premiére Partie). Revue De l’Institut Francais Du Pétrole
40:581–594 (1985).
42. J. German Rubino, C. L. Ravazzoli, and J. E. Santos. Reflection and transmission of waves in
composite porous media: A quantification of energy conversions involving slow waves. Journal
of The Acoustical Society Of America 120:2425–2436 (2006).
43. M. D. Sharma. Wave propagation across the boundary between two dissimilar poroelastic
solids. Journal of Sound and Vibration 314:657–671 (2008).
44. M. D. Sharma. 3-D wave propagation in a general anisotropic poroelastic medium: reflection
and refraction at an interface with fluid. Geophysical Journal International 157:947–958 (2004).
45. M. A. Biot. Theory of propagation of elastic waves in a fluid saturated porous solid. I.
Low-frequency range. The Journal of the Acoustical Society of America 28:168 (1956).
46. M. A. Biot. Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher
frequency range. The Journal of the Acoustical Society of America 28:179–191 (1956).
47. M. A. Biot and I. Tolstoy. Formulation of wave propagation in infinite media by normal
coordinates with an application to diffraction. The Journal of the Acoustical Society of America
29:381 (1957).
48. G. Rosi, A. Madeo, and J. L. Guyader. Switch between fast and slow Biot compression waves
induced by“second gradient microstructure” at material discontinuity surfaces in porous media.
International Journal of Solids and Structures 50:1721–1746 (2013).
124 A. MADEO ET AL.
49. C. Pideri and P. Seppecher. A second gradient material resulting from the homogenization of an
heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics 9:241–257
(1997).
50. S. Alessandroni, U. Andreaus, F. dell’Isola, and M. Porfiri. Piezo-ElectroMechanical (PEM)
Kirchhoff-Love plates. European Journal Of Mechanics A-Solids 23:689–702 (2004).
51. S. Alessandroni, F. dell’Isola, and M. Porfiri. A revival of electric analogs for vibrating
mechanical systems aimed to their efficient control by PZT actuators. International Journal of
Solids and Structures 39:5295–5324 (2002).
52. U. Andreaus, F. dell’Isola, and M. Porfiri. Piezoelectric passive distributed controllers for beam
flexural vibrations. Journal of Vibration and Control 10:625–659 (2004).
53. F. dell’Isola and S. Vidoli. Continuum modelling of piezoelectromechanical truss beams: An
application to vibration damping. Archive Of Applied Mechanics 68:1–19 (1998).
54. M. Porfiri, F. dell’Isola, and F. M. F. Mascioli. Circuit analog of a beam and its application to
multimodal vibration damping, using piezoelectric transducers. International Journal of Circuit
Theory and Applications 32:167–198 (2004).
55. G. Rosi, R. Paccapeli, F. Ollivier, and J. Pouget. Optimization of piezoelectric patches
positioning for passive sound radiation control of plates. Journal of Vibration and Control
(2012) DOI: 10.1177/1077546312437236.
56. G. Rosi, J. Pouget, and F. dell’Isola. Control of sound radiation and transmission by a
piezoelectric plate with an optimized resistive electrode. European Journal of Mechanics ASolids
29:859–870 (2010).
57. U. Andreaus, P. Casini, and F. Vestroni. Non-linear dynamics of a cracked cantilever beam
under harmonic excitation. International Journal of Non-Linear Mechanics 42:566–575 (2007).
58. G. M. Owolabi, A. S. J. Swamidas, and R. Seshadri. Crack detection in beams using changes
in frequencies and amplitudes of frequency response functions. Journal of Sound and Vibration,
265:1–22 (2003).
59. P. F. Rizos, N. Aspragathos, and A. D. Dimarogonas. Identification of crack location and
magnitude in a cantilever beam from the vibration modes. Journal of Sound and Vibration,
138:381–388 (1990).
60. U. Andreaus, B. Chiaia, and L. Placidi. Soft-impact dynamics of deformable bodies. Continuum
Mechanics and Thermodynamics 23:375–398 (2013).