In this work, a gamma ray Compton backscatter technique is used for imaging defects and
thickness variations in insulated pipes and metal plates containing depressions of various
diameters and at various depths from one side of the object. The scattered radiation was
measured by a scintillation detector that scans the object using a two-dimensional mechanical
scanning system. The gamma spectrum was displayed with a multichannel analyzer
(MCA), and the energy window width was selected so that only Compton single scatter
counts were measured. Images were constructed using the LabVIEW computer program.
Successful images of defects on the outer surface of the object under the insulation were
obtained, and the system was found to be able to detect wall thickness changes in large
pipes with walls more than 15 mm thick. Low activity sources of 108 Bq (a few mCi) were
used, and the dose rate near the surface is four orders of magnitude lower than conventional
industrial radiography sources, permitting it to be much safer.
1. M. Twomey. NDTnet 3 February (1998). Available at: www.ndt.net (Accessed April 21, 2014).
2. M. Lettich. Insulation Outlook November (2005).
3. R. L. Lamarsh. Introduction to Nuclear Engineering. Addison-Wesley Publishing Company, Menlo
Park, California, 2nd edition (1983).
4. K. Edalati, N. Rastkhah, A. Kermani, M. Seiedi, and A. Movafeghi. Int. J. Pres. Ves. Pip. 83:736–741
(2006).
5. X. Xu, R. Gould, S. Khan, E. H. Klevans, and E. S. Kenney. Nucl. Instrum. Meth. A 353:334–337
(1994).
6. H. Lee and E. S. Kenney. IEEE Trans. Nucl. Sci. 38:12–827 (1991).
7. H. Lee and E. S. Kenney. Nucl. Technol. 100:70–78 (1992).
8. Z. Asa’d, M. Asghar, and D. C. Imrie. Meas. Sci. Technol. 8:377–385 (1997).
9. A. Sharma, B. S. Sandhu, and A. Singh. Appl. Radiat. Isot. 68:2181–2188 (2010).
10. S. Abdul-Majid and Z. Tayyeb. 3rd Middle East Nondestructive Testing Conference and Exhibition,
Bahrain, pp. 173–181 (2005).
11. S. Abdul-Majid. Desalination 91:35–49 (1993).
12. G. Harding and E. Harding. Appl. Radiat. Isot. 68:993–1005 (2010).
13. G. Harding. Radiat. Phys. Chem. 71:869–881 (2004).
14. G. Harding. Radiat. Phys. Chem. 50:91–111 (1997).
15. W. L. Dunn. Appl. Radiat. Isot., 61:1217–1225 (2004).
16. J. Gerl. Nucl. Phys. A 752:688c–695c (2005).
17. W. J. Baukus. 16th Security Symposium and Exhibition, Section V: Technology Forum Focus Group II,
Transportation Security Technologies and Tools, June 28 (2000).
18. M. D. Herr, J. J. McInerney, D. G. Lamser, and G. L. Copenhaver. IEEE T. Med. Imaging 13:461–469
(1994).
19. V. E. Stepanov, O. P. Ivanov, A. N. Sudarkin, and L. I. Urutsoev. Nucl. Instrum. Meth. A 422:724–728
(1999).
20. M. Lenti. Nucl. Instrum. Meth. A 588:457–462 (2008).
21. G. Sun, X. Chen, L. Wei, C. Ma, T. Zhang, K. Li, D. Li, C. Wei, Z. Zhang, T. Hu, R. Wang, B. Feng,
and L. Shuai. Nucl. Instrum. Meth. A 594:61–65 (2008).
22. S. S. Tang and M. A. Hussein. Appl. Radiat. Isot. 61:3–10 (2004).
23. N. Shengli, Z. Jun, and H. Liuxing. Proceeding of the Second International Workshop on EGS,
Tsukuba, Japan (2000).
24. C. Driol, M. K. Nguyen, and T. T. Truong. Simul. Model. Pract. Th. 16:1067–1076 (2008).
25. S. Abdul-Majid and W. H. Abulfaraj. Arab. J. Sci. Eng. 13:385–394 (1988).
26. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K.
Olsen. XCOM: Photon Cross Sections Database. National Institute of Standard and Technology, NIST
Standard Reference Database 8 (XGAM) (2010).
27. J. H. Hubbell. Int. J. Appl. Radiat. Is. 33:1269–1290 (1982).