Article Article
Electro-Mechanical Impedance (EMI)-Based Incipient Crack Monitoring and Critical Crack Identification of Beam Structures

Fatigue-induced damage is often progressive and gradual in nature. Fatigue is often deteriorated by corrosion in ageing structures, creating maintenance problems, and even causing catastrophic failure. This ushers the development of structural health monitoring (SHM) and nondestructive evaluation (NDE) systems. Recent advent of smart materials applicable in SHM alleviates the shortcomings of the conventional techniques. Autonomous, real-time, remote monitoring becomes possible with the use of smart piezoelectric transducers. For instance, the electro-mechanical impedance (EMI) technique, employing piezoelectric transducers as collocated actuators and sensors, is known for its ability in damage detection and characterization. This article presents a series of lab-scale experimental tests and analysis to investigate the feasibility of fatigue crack detection and characterization employing the EMI technique. This study extends the work by Lim and Soh [1] to incorporate the phases involving crack initiation and critical crack. It is suggested that the EMI technique is effective in characterizing fatigue induced cracking, even in its incipient stage. Micro-crack invisible to the naked eyes can be detected by the technique especially when employing the higher frequency range of 100–200 kHz. A quick and handy qualitative-based critical crack identification method is also suggested by visually inspecting the admittance frequency spectrum.

1. Y. Y. Lim, and C. K. Soh. Smart Materials and Structures 20:125001 (2011). 2. H. O. Fuchs, and R. I. Stephen. Wiley, New York (1980). 3. L. Pook. Springer, Netherlands (2007). 4. G. Park, H. Sohn, C. R. Farrar, and D. J. Inman. The Shock and Vibration Digest 35:451–463 (2003). 5. F. Dell’Isola, C. Maurini, and M. Porfiri. Smart Materials and Structures 13:299–308 (2004). 6. I. Giorgio, A. Culla, and D. Del Vescovo. Archive of Applied Mechanics 79:859–879 (2009). 7. L. Tang, Y. Yang, and C. K. Soh. J. Int. Mat. Syst. Struct. 21:1867–1897 (2010). 8. F. P. Sun, Z. Chaudhry, C. A. Rogers, M. Majmunder, and C. Liang. Proceedings of SPIE Conference on Smart Structures and Materials (I. Chopra ed.), pp. 236–247 February 27, (1995). 2443, San Diego, California. 9. V. Giurgiutiu, and A. N. Zagrai. J. Int. Mat. Syst. Struct. 11:959–976 (2000). 98 Y. Y. LIM AND C. K. SOH 10. A. S. K. Naidu, and S. Bhalla. Proceedings of ISSS-SPIE on Smart Materials, Structures and Systems, Bangalore, India, 639–545 (2002). 11. V. Giurgiutiu. 1st edition, Academic Press, Oxford (2007). 12. Y. Y. Lim, S. Bhalla, and C. K. Soh. Smart Mat. Struct. 15:987–995 (2006). 13. S. Park, J. J. Lee, D. J. Inman, and C. B. Yun. J. Int. Mat. Syst. Struct. 19:509–520 (2008). 14. Y. Y. Lim and C. K. Soh. J. Int. Mat. Syst. Struct. 23:815–826 (2012). 15. Y. Y. Lim, and C. K. Soh. Smart Struct. Syst. 11:349–364 (2013). 16. S. W. Shin, A. R. Qureshi, J. Y. Lee, and C. B. Yun. Smart Mat. Struct. 17:055002 (2008). 17. Y. Yang, B. S. Divsholi, and C. K. Soh. Sensors 10:5193–5208 (2010). 18. S. Park, C. B. Yun, and D. J. Inman. Fat. Fract. Eng. Mat. Struct. 31:714–724 (2008). 19. V. G. M. Annamdas, and C. K. Soh. J. Int. Mat. Syst. Struct. 21:41–59 (2010). 20. V. Giurgiutiu, A. Reynolds, and C. A. Rogers. J. Int. Mat. Syst. Struct. 11:802–812 (1999). 21. V. Giurgiutiu, B. Xu, Y. Chao, S. Liu, and R. Gaddam. Smart Struct. Syst. 2:101–113 (2006). 22. I. Sevostianov, A. Zagrai, A. W. Kruse, and H. C. Hardee. Int. J. Fract. 164:159–166 (2010). 23. M. H. Kim. J. Int. Mat. Syst. Struct. 17:35–44 (2006). 24. J. Ihn, and F. K. Chang. Smart Mat. Struct. 13:609–620 (2004). 25. J. Ihn, and F. K. Chang. Smart Mat. Struct. 13:621–630 (2004). 26. C. K. Soh, and Y. Y. Lim. Advanced Mat. Research 79–82:2031–2034 (2009). 27. V. G. M. Annamdas. Inter. J. Aero. Sciences 1:8–15 (2012). 28. J. Li, Z. Luo, L. Lin, X. Li, and M. Lei. Insight-Non-Destructive Testing and Condition Monitoring 54:267–271 (2012). 29. R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs. 2nd ed., Wiley, New York (2001). 30. P. I. Ceramic. Piezoelectric ceramic products – fundamentals, characteristics and applications. Lindenstrabe, Germany. Available at: (2011). 31. Y. Yang, Y. Y. Lim, and C. K. Soh. Smart Materials and Structures 17:035008 (2008). 32. Y. Yang, Y. Y. Lim, and C. K. Soh. Smart Mat. Struct. 17:035009 (2008).
Usage Shares
Total Views
110 Page Views
Total Shares
0 Tweets
0 PDF Downloads
0 Facebook Shares
Total Usage